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v; ii An abstract model is suggested to describe precisely systolic
t-: Ei networks and to verify their operation. The data items appearing on
Eg - the communication 1inks of such networks at consecutive time units
:gf j?i are represented by data sequences and the operation performed by the
\u ;k network-cells are modeled by a system of equations involving operations
:zg ;E .on sequences. The input/output relations, which descirbe the global
'ﬁg a effect of the computations performed by the network, are obtained by
> ;; solving the corresponding system of sequence equations. This input/
;E Ii output description can then be used to verify the operation of the
EE = network.
‘:\ ii The model is supplemented with a simple computer language that
2; . may be used to express any system of causal equations describing the
;%: N operation of a systolic network. An interpreter is developed for
’; [: this language to solve such a system for specific forms of the inputs
‘i; ] and to produce the corresponding outputs. The application of this
:E% 52 interpreter to the computational assessment of a given systolic network
‘5; ) is equivalent to the simulation of its execution.
;zi ;; The abstract model is then applied to the specificatioh and verifi-
§§ . cation of a systolic machine for the computation of the elemental arrays
i; :i in finite element analysis. Finally, possible organizations for complete
iz ; finite element systems are suggested based on the idea of pipelining
?f; N the computations associated with the different elements. o
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1. INTRODUCTION.

in the past few years, the concept of systolic architectures [33] became
tncreasingly important and has been intensively studied for the design of
computer networks that utilize natural paralielism by moving the data regu-
larly in the network. This type of architectures has two properties desirabie

in VLSl implementations, namely. regularity and iocal interconnections.

Aithough the concept of systolic architectures is very well developed.
few techniques appear to be known for a formal specification and verifica-
tion of such networks. In fact. in most papers on systolic networks. very
tittle formalism is used. and the reader is usually left with a few diagrams
and experimentai evidence. At best, an ad-hoc proof technique is

deveioped for some examples but is not generally usable.

By treating systolic networks as a collection of communicating. paraiiei
processes. some of the techniques for the verification of distributed systems
(see for exampie [39] ) may be applied for the verification of some correct-
ness properties of systolic networks [43,16]. However, this approach does
not make use of the special properties of systolic networks. and hence.

gives only rather general results.

in {11}, a formal approach for the representation of computationai net-
wOrkS was proposeag. This approach was elaborated upon in [26,27.53]
where the so-called wave-frgnt notation was wused to map algorithmic
gescriptions Into systolic implementations.  Although this notation provides a
cowerful tool that can be used in the automatic design of systoiic arrays
(541, 1t goes not appear to have the flexibility needed to describe generai

SyStohC networks.
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The first part of this dissertation. namely Chapters 2. 3. 4 and 5. con-

2

.y
A

cerns a farmal treatment of systolic networks. We start in Chapter 2 by
‘ introducing an abstract model for systolic computations. The model is
based on the representation of the data items appearing on each communi-
cation link as an infinite data sequence. Moreover, the operation of each
computational cell is modeled by a set of equations involving operators on
data sequences. This sequence approach separates the time and the space
dimensions of systolic networks and distinguishes between the networks func-
tions and the specific details of the computations. and thus turns out to

lead to a clear and precise specification of systolic computations.

The system of all equations that model the cells in a systolic network

represents an implicit relation between the inputs and the outputs of the

network. By solving this system of equations., we obtain an explicit formula
for the outputs of the network in terms of the inputs. This formuia is
callea the network I/0 description. The output of a specific computation
may be found Dy substituting the corresponding particular input into the /0

descniption. Then a verification of the computation requires only a com-

panison of the resulting output with the specification of the expected output. :!
Tris verification technique is described in Chapter 3. where it is aiso -
appiied to different systolic networks.
-

The appticabiiity of our verification technique depends largely on our :';'

hY

apility to mampulate sequence operators and to solve systems of sequence .
equations. The solvability of the equations is discussed in Section 3.4 _
where we snow that it is always possible to obtain an analytical expression .
for the solution of systems of equations resuiting ftrom our model of systolic :
computations. However, the analytical solution may sometimes be very com- .
-
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pncategd and thus not practical. For this reason, we introduce in Chapter 4

a computer solver that may be used to find numerically the solutions of

sequence equations.

Finally. 1n Chapter 5. we conclude the first part of the dissertation by
discussing some topics that demonstrate the power of the abstract model

ang the flexibility of the segquence notation.

it shoutd be noted here that our abstract model carries some properties
of a model called “automaton networks” [19] which in turn. is a modification
of the von Neumann celiular arrays [52.8]. It also carries some properties
of an abstract model [35) used by Leiserson and Saxe to prove that any
synchronous system can be converted into an equivalent systolic system.
Moreover. the objective of the model is similar to that of another model
developed independently by Chen and Mead [10]. Both models separate the
network function from the specific details of a certain computation and allow
for a precise specification and a formal verification of systolic networks.
However. 1n our model we follow an algebraic approach. while the model in
{10] s oriented toward a procedural approach. Maore specifically. a pro-
cedural ianguage is used for the specification of both the network and its
inputs, and the description of the output is obtained by applying fixed point

tneory (491 for finging the “least solution” of systems of recursive functions.

The second part of the dissertation consists of the Chapters 6. 7. 8
ana 9. in this part,  we apply the abstract systolic model to the specifica~

tton ang verification of a special purpose system for finite element analysis.

very crietly, the finite element method (see e.g. [57] ) is a technique
1or soiving a partal differential equation on a certain domain Q with given
cungitons on tne poundary of Q. In the case of linear equations. it

involves escentialy the foliowing tour basic steps: 1) The generation of a
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limte eiement mesh that divides Q into m finite elements. 2) The genera-

uon ot elemental stiffness matrices and load vectors for each finite element.
3) The assembly of the global stiffness matrix H and load vector b. 4) The

soiution of the resuiting linear system of equations Hu=b.

Due to its various applications in engineering and mathematics. many
finite element software systems have been developed (see e.g. {44] ) and
widely used for the solution of a variety of boundary value problems. How-
ever, the time required t0 complete any finite element computation on a
serial computer may become extremely large for many realistic., practical
problems. This wusually imposes severe limitations on the size and type of
the problems that can be handled. and leads engineers to use I[ower
degrees of approximation and hence less accurate models. This is espe-
cially true if a design procedure is based on the results of running a finite
element solver repeatedly. with a certain decision to be taken after each
run (interactive design), or if the result of the analysis is to be reported

within certain time limits. as is often the case in military applications.

For this reason. many researchers have considered the use of some
type of paraliel processing in the finite element analysis. n fact, in a sur-
vey on highly paraliel computations [20], Haynes et al. stressed the fact that
one of the most important areas in which parailel computations can be
explored 1s the solution of partial differentiai equations. especially the finite

ciement anaiysis.

Tne use of array processors for speeding up the finte element compu-
1ations were considered by many researchers; for instance. Noor et al.
{(11.10) stuaied algorithms for performing a finite element dynamic analysis
on tne CODC Gtar-100 computer. Along the same lines. Kamel et al. [48.36]

tuagieg the usefuiness of array processors. combined with mini and super

4, 094
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mini computers. in finite element computations. Both studies showed that
only a limited speed up can be obtained via array processors, especially in

the generation of the stiffness matrices and load vectors.

Similarly., the use of general purpose multiprocessors in the solution of
the linear systems appearing in finite element computations were studied.
For example, in [14,17], the Cm* muitiprocessor was used to soive linear
systems Dby iterative techniques. The experiments showed that only a limited
number of processors can be used if congestion is to be avoided in inter-
process communications. No studies have been reported in the literature
on the use of a general multiprocessor system to generate the stiffness

matrices or load vectors.

in [47,55), the problem was partitioned into a targe number of separate
processes., and each process was assigned to a processor. This system
also incorporates the use of a posteriori error estimates and a correspond-
ing refinement of the finite element grid. Although this adaptive approach
appears to be very atiractive for parallel processing. it was shown in ([56]
nat  various parallel configurations, discussed in the literature, are not
expected to give a satisfactory gain in the processing speed since the times
for communication and data movements Dbetween the different processors

aominatc the running time.

The most sigmficant attempt in this area is the design of a finite ele-
ment machine at the Institute for Computer Applications in Science and
Enaincering (UCASE), at the NASA Langley Research Center {29.28.45]. in
iy project. a 16 oit microprocessor with muitiply and divide hardware is
4s31grnea  to each node in  the finite element grid. Each processor is
girectly connesteg to eignt immediate neighbors. and a giobal bus connects

411 M2 procesICrs ono ne system The motivation for this connection is that




most of the odata required to complete the calculations at each node come
from the immediate neighbors of that node. Such a machine is pilaned to

have 1024 processors ang is still subject to experimental studies.

Altnougn 1its idea is attractive. the finite element machine has many
serious drawbacks: First of all, the direct relation between the number of
processors and the number of nodes in the finite element grid imposes
severe limitations on the size of the grid. Secondly, a suitable mapping
nas to pe found which associates the nodes with the processors. In (4], S.
H. Bokhari showed a possible method for accomplishing this task but stated
that the problem becomes very complex and time consuming for regular
meshes of size iarger than 30x30. and is even more complex for irregular
mesnes.  Finalty, 1n [30] the authors concluded that some additional tree
iike naroware, besides the global bus., is needed to implement global func-
uons such as the sum and maximum over quantities distributed over the
nodes (5. According to Jordan (28], the finite element machine is most
suitapie it the interconnections between its processors foillow the same pat-

tern as tne finite element mesh which is a very rigid restriction.

By carefully analyzing the different steps in the linear finite element
analysts. we may note that the involved computations are highly regular. and
tnat tney can be divided into separate phases. where each phase depends
LNy on the preceding phase. Hence the data can be transferred from
nrzte (0 pnase inoa pipe-lined fashion. The computation within each phase
12 Ao wen structure@ and mostly compute bound. which makes it a very

Suitali appucaton for systolic architectures.

Angr oriefly ntrogucing the finite eiement analysis in Chapter 6. we

soTy o o napter 7. the aostract model to the specification and verification

f o3 Lyoionce system for the generation of the elemental arrays. This gen-
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. eraton s often a major time consuming task in workaday finite element
{ . computations.

: . in Chapters 8 and 9. we describe the architecture of a compiete finite
B, element system. The suggested system is based on the idea of pipelining
: '_ the computations associated with the elements rather than processing them
‘:‘. --.

4".‘ ! in parallel on an array of processor., as is the case in the machine
o 7

f-:". R described in ([291. This latter machine uses an iterative scheme for the
N solution of the linear system of equations resulting from the finite element

= formulation. It reduces the processing time considerably by employing a

s &4,
P
P

number of processors proportional to the size of of the problem. On the

Y
e Y
kg - other hand. the pipeline/systolic approach may be applied with either direct
: S5 or iterative solution schemes. and it results in an architecture that is not
O

LIl l‘l

.
ate's

oy

dependent on the number of elements in the mesh that covers the domain

’

A
()

of the problem. Basically. it uses a fixed number of processors to com-

: 3 plete the analysis in a time proportional to the size of the problem. Each
:: :f::' approach has its own merits and may be suitable for certain applications.
.‘ r It should be mentioned. however. that the architecture of the system
’ that applies a direct solution scheme has the disadvantage of being depen-

dent on the bandwidth of the global stiffness matrix. Systems that apply
— iterative  solution schemes do not share this limitation but are relatively
- w2

_f:i: ;:; slower. in fact. it turns out that the time for completing each iteration step

. i3 proportional to the number Of elements in the mesh,
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2. AN ABSTRACT SYSTOLIC MODEL.

Systolic architectures. pioneered by H. T. Kung., are becoming increas-
ingty attractive due to continuous advances in VLS| technology. This type of
network architectures has two properties very desirable in VLS! implementa-

uons, namely. regularity ang local interconnections.
A systolic network can be viewed as a network composed of a few

types of computational cells, regularly interconnected via local data links and

organize@ such that streams of data flow smoothly within the network. For

an introduction to systolic architectures. we refer to [33,31] where further

references to specific examples are given. -

‘ )
As an introductory example, we Dbriefly review a simple systolic network

for the computation of one dimensional convolution expressions (31l. More i

specifically, given a sequence of numbers fx], Xpo o xn). and a sequence .

of weights (w]. w,. wk). we want to compute the sequence (y1. Yo - g

Y, 4+1-x} where each y, Is defined by: ﬁ
k
yi=i§1 Wi K- @1 :3

Figure 2.1 shows the building cell of the 1-D convolution network under

discussion. it is a multiply/add cell with a one word memory to store a

real number w.

k:: _'v'_.a

At each clock pulse, the cell receives two input data items. Xin and

Yin performs its computation and delivers at the next clock puise the out-

‘l
it

puts X0 = %in and Yo = Vip T W X, Figure 2.2 shows three such celis

connected into a network that performs the convolution calculation for the

case k=3. The elements x.. x x_are pumped in at the left end of

1" 72 n
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the network, each separated from the other by one time unit, and zeroes a
are pumpeg n at the right end. To illustrate the operation of the array. we E
show in Figure 2.3 the relative location and value of each data item at
umes t=3.4.5 and 6. where t=1 is the time at which the network started its

execution. By following the data paths, it is easy to ascertain that the output

of the array will include the sequence (y], Yo. - ynﬂ-k" a
in order to specify and verify formally the operation of any systolic net- \
work, we have to consider both the spatial topology of the network and the -
timing of the data movement on its communication links. In this chapter,
we suggest a formal model designed specificaily to conveniently separate ’
the space dimension of the systolic architecture from its time dimension. -
The separation makes the specification of systolic networks clearer and ..
leads to a formal technique for the verification of their operations. We :Z:C
start by considering the mathematical basis of the model. :_:.
-]
2.1. Data sequences and causal operators. o
We define a data sequence to be an infinite sequence whose eilements -
are members of the set H°=R U (8}, where R is the set of real numbers E
and & denotes a special element. not belonging to R. called the “don‘t -
care element”. We extend any operator defined on R to Ro in one of the
following two ways: e

1) By adding the rule that the result of any operator involving 0 is 8. For
example, we extend the usual arithmetic operations ‘op’ = '+, '=', '* or

/', by adding the foliowing rule
O op’ x =x ‘op” 8 =0 for all xeFi6

This class of operators on Fio will be called 6-regular operators.

2) By treating 6 as a special symbol that affects the result of the opera-

P ]
e Tl Al e
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tion. This class will be called non O-regular operators. For exampie. we
will consider later the binary operator ® such that for any x.yeRo.

x @y =x + vy, if x.y»b. x 56 =006 x =x 2.2)

Two other non O-regular operators. that wiil be used in Section 3.3, are

the operators mino and max . defined on an ordered pair (x.y), x,yeRo by

min{x .y} if x,y»0
mino(x.y) = {
y it x=b or y=0
and
maxix .y} it x.y#0
maxo(x,y) = {
X if x=6 or y=6.

where min{) and max{} carry the usual meaning on R The reason for dis-

tinguishing between O-regular and non O-regular operators will become

clearer as we proceed with the discussion.

Let N be the set of positive integers. Then any data sequence 7 is

defined as a mapping from N to Ro; that is. the image element n(). ieN.

is the ’.th element in the sequence. The set of all data sequences. that is

the set of all such mappings. will be denoted by R, = ( 7 | MN-=R,}.

=

p s extended to R, Dby applying the

operation element-wise to the elements of the sequences with &6 being the

Any operation defined on R

resuit of any undefined operation. For example. if 'op’ is a binary operation

2

defined on Rb' then for ait "1'"26R0' we have ‘n1’op' 172 = "3' where for

ail ieN, ns(i) is given Dby
171(/') ‘op’ 772(i) it 1)3(/) is defined

7;3(I) = {
(o} otherwise.

We will also use scalar operations on sequences. For exampte. th:

scalar product of a sequence neRo and a number weR is defined as the
2

o}

sequence { = w . N €R, for which () w nG), i eN.

- -
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Given the previous definition of data sequences. we define the set of

L]
bounded data sequences R, c A, to contain those sequences having only

Lo} o}
a finite number of non-0 elements. It is then natural to introduce the ter-

mination function T:ﬁo-N such that for any neR,. T( is the position of

the last non-0 element in 7. in other words:

for any neRo, Tm=i == Ni)*d and 7()=06 for j>i.

in this dissertation, we will only consider bounded data sequences. These
will be denoted by small greek letters and simply referred to as sequences.
Two special sequences will be repeatediy used. namely the don’t care
sequence ti’l and the zero sequence t. The first is defined by O.(t)=6 for

all t, and the second by ((t)=0 for 1<t<7(¢) and any arbitrary large T (¢).

o to RO' we may also

in general, an n-ary sequence operator T

In addition to the operators extended from R
define operators directly on ﬁo.
is a transtormation I‘:[ﬁoln-ﬁo where [ﬁoln=ﬁo xﬁox---ﬁo is the cartesian
product space of n copies of ﬁo. Many operators of this type will be
defined in Section 2.4, we introduce here only a basic unary operator that
will be wused frequently in our discussion, namely the shift operator

n":ﬁo-oﬁo defined for any k>1 by

5 it i<k
nG) = {
EG~k) if i>k

More descriptively. n" inserts k O-elements at the beginning of a sequence.

For exampile if e=a].a2.a3.a4,o.o,... then T(¢)=4 and

EG)
03£

a; 1</ €T (&)

0.6.6.31 .a2.a3.a4 ,0.06.0....

it is easy to verify that the termination function generally satisfies

LR
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N ' It is also clear that we can define a sequence operator by combining
ORI , ,
* previously defined sequence operators. For example we might define an
oo ot
[N [ S — — P -
) operator T:A, XA, XA, - -
i c p Pl Ro no as follows:
N TEnO =0l +19 =
..:.\
:’ - where square brackets are used for grouping and parenthesis for enclosing
e
. the arguments of the operator.
T
s We define a causal operator to be any n-ary sequence operator
o _ _
’_ I‘:[ROI"~RO which satisties the causality property in the sense that the ith
y-"‘\- ‘:\
@ element of any of its operands can only affect the ith eilement of its image
\.‘:i: o\ .
-t:'\ > for j>i. In order to formulate this more precisely, assume that for any
AR
A L I -
:-:.: given sequences 'n‘_eFI‘5 r=1.2....n, the image under [ is £=1"(1)1,...nr,..nn).
{ E Then T is a causal operator if the replacement of any operands n,. 1<r<n,
:'-'.;j by other sequences 7, satisfying
S : ,
S n, M = 7@ 1<t <i '
wa (" results in an image sequence ¢’ = T'(n,...n ..7n ) for which
YA
J £'@t) = &) 1<t <
'j::l: -'.: in other words., the value of £()) depends only on the first i~1 elements
i of m. 1<ren.
T
b Similarly. we may define weakly-causal operators for which the im ele-
k-.*-
E‘:::jl T ment of the image sequence £() depends only on the first i elements of
F’.‘ - the operands n,. 1<r€<n instead of the first i-1 elements. With this. it is
5::::; o easily seen that the combination r' 12 or r° ) of a causal operator T
S
4 2 ,
t'_-.'. ] and a weakly-causai operator '~ is a causal operator. For instance. the
SO K kK 2
@ - shift operator ' is causal and hence. the combined operator N [ s

"

S
.. 2
SR causal, for any weakly causal operator I'".




In the previous discussion. we only considered the space RO of

sequences of real numbers. However, other sequence spaces may be
defined as weli. by starting with a set different from the set of real
numbers R. For example. if we start from the set of boolean truth values

8 = (true. false). then we may define the space of boolean sequences B_o

(¢ . EN-BUG) ).

2.2. The abstract model.
We begin the specification of the mathematical model used in our verif-
ication technique with the definition of a loop-iess. directed muiltigraph

G(V.E,w_,-p_l_) as a structure composed of

(@ a set V of nodes.
(b) a set E of directed edges:
(c) two functions v_.-p+:E-°V. satistying the condition that for any edge

e €€,

v_e) # v (8) 2.3)

For each edge e €E. the nodes y_(e¢) and v, (@) are the source and
destination node. respectively, of that edge. Clearly. the condition (2.3)
prevents any nodal loops in the graph. This definition of a muiltigraph
allows any two nodes to be connected by more than one edge in the same
direction, a property that may be useful when we represent systolic networks
by this abstract model.

As wusual in graph terminology. for any node veV, the edges (e.¢o_
(e)=v} directed out of v are termed the OUT edges of v, while the edges
(9:0?(e)=v) directed into v are termed the IN edges of v. Accordingly. the

IN-degree and OUT-degree of v are the number of IN edges and OUT

edges of v. respectively. Any node veV with IN-degree zero or OUT-

N
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degree zero is cailed a source or a sink, respectively. All other nodes are

called interior nodes of G. We shall use the notation Vg, Vr and v, for

the subsets of V cohtaining the source. sink and interior nodes of V.
respectively. Of course. the congition VS UVy UV, =V is always satis-
fied.

With this notion of a multigraph, we define our abstract systolic model

to be composed of the following components.
[A1] A multigraph G(V.E.vo_.w)).

[A2] A coioring function coI:E~CE. which maps E into a given finite set of
colors C. and hence assigns a color to each edge in E. The coioring
function is assumed to satisfy the condition that the different IN edges of
any node in V’UVT have different colors. and correspondingly that the dif-
ferent OUT edges of any node in V uv, have different colors. Edge colors

S
will be denoted by lower case letters.

IA3] For each edge e €E. a sequence £e of a given sequence space is

specified.

[A4] For each interior node veV, with IN degree m and OUT degree n. we
. - i, m
are given n causal m-ary operators I'v.[ﬁol ..no which specify the ‘node

10 description”. More specificaily, if n’. j=Y.-++.m and e', i=1,+++.n are
the sequences associated with the IN and OUT edges of v. respectively.

then the n relations
i _ o) m
& =T ---9") i=V,-+<.n

are the I/0 description of v. The different IN and OUT edges of v are

distinguished in the 1/0 description by their colors.

Since [A2] ensures that alli edges terminating at a given node v have

different colors, it follows that any edge e€E may be uniquely identified Dby
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a pair (y.v). where y=col(e) and v=op*(e). To simpiify the notation, the pair

(y.v) will often be written in the form Yy and the sequence associated with -y
that edge will be identified by the symbol 7 . where we replaced the letter
y by its corresponding greek letter 7.

For practical applications, it is generally desirable to identify the nodes oy
of the network by appropriate tabels which correspond to the problem at
hand. This. means that we introduce a set L of labels together with a one-
to-one function ¥y:V-L from V onto L. In our examples. we usually identify

the nodes directly with their labels. -

2.3. The general systolic network.
By giving ‘a physical interpretation to each component in the general
abstract model we obtain a general systolic network. The basic idea of this

interpretation may be summarized as foliows:

Each interior node represents a computational cell and each source/sink
node corresponds to an input/output cell for the overail network. To distin-
guish in our figures the computational cells from the /O celis. we depict

computational cells by circles and I/0 cells by squares.

Each edge xveE represents a unidirectional communication link between
the two cells it connects. The sequence associated with X, then comprises
the data items that appeared on it in consecutive time units. More specifi- -
cally., if év is the sequence associated with X, then the im element ot £v.
namety zv(i) is the gata item that appeared on x, at time t=i units. where

t=1 is the time at which the network started its operation.

Clearly, the sequence space from which the sequences are taken
corresponds to the type of data items that may be carried on the commun-

ication links. In this dissertation, we will consider only networks in which

ol Bl B
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the communication links may carry real numbers. In other words. any

sequence is assumed to be in the space R

]

-~ For an interior node. the node I/0 description describes the computa-
- tions performed by the cell corresponding to that node. We iliustrate this
A with two simpie examples:
LI
rl €. £
r x y 2in 0
A
S
A n

n=90Q¢ Mo in
2
. Figure 2.4 - A delay cell Figure 2.5 - A mulitiply/add cell
;.,.

EX 1. The node shown in Figure 2.4 represents a simple latch cell
@ which produces at any time t>1 on its output link the same data item
I-that appeared on its input link at time t-1. At time t=1. we have
,'::j n(=06. which corresponds to the fact that at the beginning of the net-

m work operation no specific data item appeared on the output link.

EX 2: The operation of the muitiply-add cell mentioned in Section 2.1

and shown in Figure 2.1 may be represented by the foilowing node /0
ac descriptions:
|
K |
. Eo =0 £in

- 'no=n(1;in+w.e’.n)

). where weR is a given real number and £, . Nin &, and 7 are the

Lt

f.\ ,:_-- input and output sequences of the node as shown in Figure 2.5.

'..l-.-' ._-

L At this point, it may be useful to note that if a &-regular operator is

’ L used to model a computational cell, then this cell treats 06 as a "don't

j-::j-:i} know" quantity, and consequently, the resuit of any operation cannot be

.":..,.. ,:.'
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L
known if any of the operands is not known. On the other hand. non 6-
regular operators are used to model computational cells which treat 0 as

a special symbol that affects the result of the operation. Hence. each phy-

sical communication link in networks containing cells of this type should be
augmented by an additional wire to indicate whether the link carries valid
data or not. The operation of each cell is then dependent on this addi- &

tional piece of information.

Since in any practical dynamic system any data item produced by a
computational cell at time t depends only on the data provided to that cell -
at times less than t. we immediately see the importance of the condition
imposed in Section 2.2 on the node /O descriptions. namely that exclusively L3
causal operators in the sense of Section 2.1 are to be used. We also
note that with the model described above. the computational power of each -
celi is not limited to simple arithmetical operations. In other words, a cell
could be an intelligent cell that can perform elaborate calculations provided

only that we can express these calculations in terms of causal operators. oy

Clearly. operalors on sequences pilay an important role in the abstract

model. In the next section, we introduce additional sequence operators that o

are defined directly on F)o

2.4. Additional operators on sequences.

.
D

2 e

o

It was shown in the last section that element-wise operators and the

Tt
e ‘s e %
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shift operator may be used to model simple computational cells. However, '.j:

these operators are not sufficient to model cells with memory capabilities or

KL

".': with compiex control structures. Here. we introduce new sequence operators

e
E‘:':': that may be used to express the computation of some elaborate types of
)

cells.  For simphcity, given any operator I‘:[§°]"~ﬁo. the notation

[T(&,.---.£ 1), will be employed to designate the " element n{t) of the

L
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image sequence n=l"(£],---,£n). This is consistent with the convention of
using square Dbrackets for grouping. We will also use the symbol - for in-
teger division and the Fortran function mod 0 that specifies the remainger of
an integer division. We start by generalizing the definition of the shift

operator given in Section 2.1

The Shift operator ' . ﬁo - ﬁo is defined for any r by

r o} it r>0 and t<r
n gla) = {
§(t-r) otherwise.

Hence. for r>0. n' inserts r O-elements at the beginning of a sequence
and therefore modeis the computation of a delay cell. On the other hand.
for r<o, a’ trims the first r elements of the sequence ang thus 1s a non
causal operator which cannot be used 10 model computational celis. The
rolie of the negative shift gperator is to provide in the proofts an inverse for
the positive shift. More precisely. for any sequence ¢. we have 0 ' 0 ¢ =
£. The converse is not always true. in the sense that a’ ﬂ-r ¢ = ¢ oniy
if £(t)=6 for t<r.

The Zero Shift operator ng:ﬁt‘o -~ Ay

that ng inserts r zeroes at the beginning of a sequence instead of r 56—

r
has the same definition as 1 except

elements. The zero shift operator is usefui in modeling delay cells in net-
works that initially set the data on their communication links to zero. in
such networks we must assume that the entries corresponding to the time

t=1 in any non input sequence are equal to 0 rather than &.

The Accumulator operator Arkes ﬁb - ﬁo is defined to model a cyclic

accumulator that starts operation at time t=r. accumulates a new element
every s time units and restarts & new cycle every sk time units. The

accumulator operator can be defined in terms of the following algorithm that

r.k.s

computes [A &1t) for any t>0, given the elements §(), j<t.

R

-4

1R
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IF (¢<r) THEN [Ar'k'sfl(t) = 0 /* accumuilator is idie */ i
ELSE
3 |
L
BEGIN
t. =t - mod(t-r) + sk) /* time of last reset */ ‘
g
na = (t-t) + s) + 1 /* number of elements accumuiated */ ‘
ks na-1 "’]
A" TENt) = L £t +s/) /* result of accumulating na elem.*/
=0
END
Evidently. this algorithm is equivalent with
v} t<r
r.k.s -
A gty = { na -1
L & _+sj) t>r
. r [
j=0 1
where na and t are as specified before. As an example. let R
5 - a., -b] 182.b2;' * '-87:b7,°,°.' b (2'4)
then
1
A232; - 6. @b, +b,.@.b tb,tb,.8.b,.8.b,+b..8.b,+b.tb..0.b,.0.5. - -
Py 8Py TE B0 TP T05-8.04.9:54105.9.54%05 706 -9.07 9.0 ;,
where @ denotes an element that is equal to the p:eceding one. g
e wl....wn = .n = ) bos
# The Multiplexer operator Mr (51""'£n) : fﬁbl Ro is defined to _._-
;:j:": model a multiplexer that has n inputs £1,~'-,£n. it starts its operation at ]
b'_:-', ‘.‘
Ry time t=r and periodically multiplexes its inputs with a time ratio of
[ wlw2---wn. If the length of the multiplexer cycle is denoted by -
e n
L k= [ w,. then the following algorithm defines the multiplexer operator
X e=1
wil,..wn . . .
' IF <r) THEN (M, (61,---,€n)](t) = 6 /* multiplexer idie */ -
o ELSE
o BEGIN
=
'c =t - mod(t=-r) + k) /* start of current cycle */ “~‘
,.‘v e
- Find the largest integer 1<e <n )
o

g8
“

@
=

i
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M. such that (t-tc) < L ! /* determine interval within cycte */ ;
. . i=1
N, [M:”' w”(&1.---,5")10) = ee(n /* chose corresponding input */
N END
~ e
~ N
X As an example, let ‘
_-: N ¢ = a,48,.'"-.8;.83.89.0.0. -
AT and 1
B o
. n = b] ,b2.' . -,b7.0.0,d,- ..
A then
. -‘.:
RS
VR M2 = 8.6.8,.b,.b,.8..b,.0.a0.0.
N . 3 . . » 3' 4: 55 6: 7. . g: .
NN
N - It is also interesting to note that the muitiplexer operator can be used
::; ‘)E{.‘ to model a de-multiplexer cell. For example. if we want to sample the
“ e
‘ h sequence ¢ at times t=r.2r.3r... . then we may express this operation as
L., -, - x x
‘ ' M:'r 1(e,o ) where 8 Is the don‘t care sequence introduced earlier.
e
RIS The muitipiexer operator can be used to define two further operators,
" o namely, the expansion and the piping operators.
>
| The Expansion operator E::ﬁo -oﬁo models a cyclic memory that is loaded
» at time t=r and is overwritten every k time units. It is formally defined by
e n=m"Tm . an.n% . ... 2Ty
¢ which on the basis of the definition of the multiplexer operator may be
rewritten as
SR 6 ter
o E',‘n = {
nit-t,) tar

b where t = mod(t-r) + k). For example. with ¢ of (2.4) we have
b
b
N Ejé = 6.0,.0.0.0.0,.0.0.60,.00.0,00000,
b L
F:_': .
e . Note that the accumulator. multiplexer and expansion opeérators are
b R
o
-
S
[
ﬁ'
D)
e A A L AT T e NN S,
F IO SRR AR S A S R A R Tl SR RIEREN .
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weakly causal operators. Besides the causal and weakly causal operators

used in modeling computational cells, some sequence operators may be
Introduced for the sole purpose of allowing us to simplify the description of

data sequences. Following are two such operators:

The Piping operator P:‘n ; [F—?o]m-oﬁo defined by

LI m, _ k... - i -
Po@ .---n) = M']‘ k(n] e n(/ Dk a e QM =1k a™
and r(p’r‘n @'.---2™) = mk. In other words. an concatenates the first k

elements of each of the m sequences ne. e=1.-+-.m, and forms one long

sequence.

On the basis of the definition of the multiplexer operator it is easily
shown that the following algorithm is equivalent with the above definition of

the piping operator

1

IF¢>mk) THEN [P’,‘n @' a™Me = 6

ELSE
BEGIN

Find the largest integer 1<e <m such that t<ek

1

[P‘r;1 @™ = n°e-te-1kK)

END

in the remainder of this dissertation, we will use the abbreviations

k e k )
P 1,m(7’) for Pm(n

m K K .
o= .***,m ), and Pm(n) for Pm('n.- .  As will be

seen later, the piping operator is very useful for the verification of pipelined

operation of systolic networks.

The Spread Operator 8° FTO -oﬁo defined by
t+s

£('l—+s) t=1.6+D+1.266+1+1,- - -

e° £y = {
o} otherwise

Hence ©° inserts s 0-elements between every two elements of &. With the

sequence ¢ of (2.4) we have, for exampie

W
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07 ¢ = a].o.o.b,.o,o.az,o.o,bz,- ..

In Appendix A, we give some properties about combinations of the dif-
ferent sequence operators. Those properties provide tools for the manipula-
tion of sequence expressions and hence will be used extensively in the
veritication of systolic networks. In the next section, we introduce the
notion of “Network I/0 Description®. which is analogous to the transfer func-

tion in circuit theory.

2.5. The Network /O Description.

Our goal in this section is to model the computation of a systolic net-
work by describing the relation between its outputs and its inputs. In order
to formalize this input/output relation, we start by introducing some new ter-
minology. We call "network output sequences” those sequences associated
with the IN edges of sink nodes, and “"network input sequences” those
associated with the OUT edges of source nodes. Then the system of all
node |/0 descriptions provides a specification of the computation performed
by the network in the form of an implicit relation between the network
input and output sequences. This relation will be called the "network 110
description”,

As a simple example. consider the hypothetical network with the graph
shown in Figure 2.6. In this graph. we assume that the edges directed to
the left are given the color y and those directed to the right the color x.
We ailso follow the naming convention of Section 2.2 to identify the different
edges In the graph. To compiete the network description, a node /0
description has tc be specified for each node in the graph. Assume that
these are given by the following causal relations:

For node 1. &, =N [ & ¢ n, 2.5.a
ng = 0 [ &, n,y 1 2.5.0)

P T
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For node 2: 83 =N £2 2.6)
For node 3: ny = N[ £3 * LA ] 2.7

Figure 2.6 - A hypothetical systolic network

For this network, Mg and 51 are the network input sequences and L is
the network output sequence. In order to obtain the network /O description
explicitty, we have to solve the equations (2.5), (2.6) and (2.7), that is, we
have to obtain an explicit expression for 7, in terms of ¢, and 7,
Generally. it is very difficult, and sometimes impossible, to derive an
explicit solution of the system of node I/0 equations. In the next section,

we show that this task may be greatly simplified in the case of certain net-

works with a homogeneous structure.

NS
» AL

2.6. Homogeneous Systolic Networks.

8y condition [A2]. any edge e€E is uniquely identified by its color and

:!';_'H

one of its incident nodes. In fact, we have already used this as a con-
venient means for identifying edges by their color and terminal node. Let

M c CEXVI be the set of all pairs (y.v). yeCg. veV,. for which there is

an edge ee€E with y=col(e) and v=¢_(¢). Then the terminai node u=np+(e)
is uniquely given and hence the successor function uM - V/ u VT is well -:.‘:}

defined by the association |
y.vIEM, y=col(e), v=¢p_(e) - u.(y,v)=«p*(e).

in other words, if there exists an edge e with color y and starting node v. __‘

then u(y.v) is the terminali node of e.

. . A e A A P e N e e v e s .. .- . . .
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- Given a systolic network based on the graph G= (V.E.w_.w*). a subset
ﬂ V, € v, of interior nodes is said to be a homogeneous set if:
. [H1] All the nodes in V, have identical IN and OUT degrees. say m
' and n. respectively.
F-! [H2] The sets of the m colors for the IN edges of any interior node
vev, are identical. So are the sets of the n colors for the OUT edges
"1.
;j of v. Denote the colors of the IN and OUT edges of v by
1 2 m
y . .---y and z] .22.- 2 respectively.
Bt- (H31 The node I/0 descriptions of any interior node vevl are generic
~ in the sense that they may be written in the form:
RS
> i i m
¢ = l‘(nv.’--.nv) i=1,+«++.n
mez .v)
’ where T.i=1.---.n are given n-ary operators which are independent of
N .
B the particular node in VI . & is the successor function defined earlier
in this section and nc j=1,-++.m ang ci i i=1,-++.,n are the
oo wiz .v)
sequences associated with the IN and OUT edges of v. respectively.
. 3 A network is said to be homogeneous if the set of interior nodes VI in
. its graph G is a homogeneous set. More generally. if there exists a parti-
':j-::: f'_}. tion Vl = vl] u --- u v‘; of v, into k non-empty homogeneous subsets
5;4 -~ v}\/l‘ then the network is said to be k-partially homogeneous. The
:j.'::j-' main advantage of having a homogeneous (or partiaily homogeneous) network
VO
20 is that the resulting system of equations has a repetitive pattern., which, in
S

many cases. allows us to obtain its solution analytically.

As an example. we consider the 1-D convolution network described in
the beginning of this chapter. The graph of this network is shown in Figure

2.7. where we assumed that the edges directed to the left have the color

“»

while thoase directed to the right have the color ‘p’. The nodes of the




graph are identified by the integers -1.0.1...k+2, where nodes -1 and k+2

"are source nodes. nodes O and k+1 sink nodes. and nodes 1 through k

interior nodes. The successor function is defined for any interior node

{ i+l if y=8

i-1 it y=p

Figure 2.7 - The graph for the 1-D convolution network

The 1/0 description of a typical interior node i in the graph, 1<i<k, is

given by the following causal relations

/4 =N rri (2.8.a)

i=1

0,47 < n [O’. two.m ] (2.8.b)

I
This system of difference equations is easily solved. First note that the
sotution of (2.8.a) obviously is

mo= N 14 (2.9)
By substituting this in (2.8.0) we obtain

o, =no +tw . (a7 g @10

The soiution of (210) is then given by Lemma 1 in Appendix A as:

K ,
K i1 K=(k=f +D+1
Opgr =00 Oy t /);]n Wy i+ .
K
K 2j-1
=N o, ¢ 4[‘, N [wk_”.I .Ml 211

8
D
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)
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= This is the /O description for the network.
. In the previous example we derived the network 1/0O description for a
. homogeneous network. The technique is equally appticable to k-partially
homogeneous networks if k is reasonably small. In that case. a system of
L ditference equations is formed Dby writing the generic 1/0 description for a
o typical node from each homogeneous subset of interior nodes v‘/ i=1,...k.
The network /O description is then obtained by solving this system of equa-
- tions. The back substitution network and the sorting networks discussed in
. the next chapter are examples of 2-partially homogeneous networks.
“ Finally, we note that the system of causal equations that models the
u computation of the Qgifferent cells in a systolic network is an implicit 110
:.',: description for that network. The derivation of an explicit formula for the
= I/Q0 description depends on our ability to solve this system of equation
E analytically. In both its implicit and explicit forms. the /0O description is a

characterisic of the network itself which is independent of any particular
computation performed on the network. In the next chapter. we associate a

certain computation with a given network, and we suggest a technique for

tne verification of this computation.
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3. FORMAL VERIFICATION OF SYSTOLIC NETWORKS.

A computation on a systolic network is defined by two essential com-
ponents. Namely. the systolic network and the description of its input. The
network itself is characterized by its /0O description which provide the gen-—
eral relation between the inputs and the outputs. However, in the verifica-
tion of a particular computation. we are usually interested in the behavior of
the network for specific inputs. That is we wish to verify that. for specific

inputs, the network wiil produce an output with prescribed properties.

Given the /0 description and the input specifications, The verification of
the network’'s operation is accomplished Dy substituting the input specifica-
tions into the 170 description, and then, manipulating the resuiting equations
to obtain an explicit description of the output sequences. This explicit
description should be in a form that may be compared with the specification
of the expected output. In order to clarify our technique. we consider
again the exampie of the 1-D convoiution network whose I/0 description was
found to be given by equations (2.11). Our goal is to verify that the net-
worx 1ndeed produces the results in equation (2.1) for the network input
cequences described by

k=1

o] = N et (3.1.a)

me = ¢ 3.1.0
where

tt) = 0, 1Kt€<T(W=n~(k=-1)

) X,. 1Kt<T(&)=n

t

In order to find the corresponding specific form of the output

sequence ok”. we substitute (3.1) into (2.11) and obtain
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K 2j-1
Oy = 0 & ¢+t EN We_js1 - © &

‘ i=1

By the properties P3.1, P4, P2.1 and Pl.1 in Appendix A, this may be

2k-1

rewritten as

xH—q-l

-
{2

"

o
Tt
E 3

k
- _ ~2k=1 2¢G-1
. Opyy = 0 e L+QI§]Q e[k_l.H £l
n,' = k
=0 Veirne L 2 Tw_ ., . @
W i=1 =it
b:. _ K _
b =n* Ve i +ne ¢ o7 g
i=1 /
where T(ni)=T(£)=n and n/(t) = wk-/ﬂ Et) = wk—iﬂ Xq- Finally. apply-
ing Property P19 of Appendix A, we find tha:
&
o =02k1e¢+nen"‘n
. k+1 2k -1
:_: =N e it + ni
- = 0% o 0. (3.2)
l where 7 is defined Dy:
'. T = n-k=-N
- k
ni) = L ntth=j) 1<t <T ()
C g
T = r Wi-it1 "tk - 1<t<T (M)
. /=1
k
- 1€t <T (M)

-
.

o X
1

in the last line. the summation index was changed to Qq=k-j+1 in order to

- o provide for the same expression as in (2.1).

”‘ Evidently, equation (3.2) represents the output of the array in a clear

!_!..: - and precise form: it indicates that after an initial period of 2k-1 time units.
the elements n(r)=yt, 1<t<n-k=1). will appear on the output iink, each
separated from the other by one time unit

—!‘; & In the tast example. and in the example of the matrix/vector multiptica-

f non network presented in the next section, the verification procedure is
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based on the availability of an explicit 1/0 description which represents a
general solution of the system of equations that models the computational
celis in the network. However, in some cases. it is difficult to solve this
system of equations in general, and it is much easier to solve it for
specific input sequences. In other words. sometimes it may be difficuit to
determine the explicit 1/0 description while it is easier to obtain the
description of the output sequences for specific inputs. The exampie of the
back substitution network given in Section 3.2 illustrates this further. In this
example. we verify the operation of the network without obtaining an expticit

formula for the network IO description.

The existence of an analytical solution to systems of causal equations
Is discussed In some detaiis in Section 3.4, where we show that it is
aiways possible 1o obtain a formal solution of such system of equations.
However. the form of the solution may sometimes be very complicated and
nence not practically useful. In such cases. we may still verify the opera-
uon of the corresponding network if we have an idea about the network
benhavior and hence about the sequences associated with the different edges
of the graph. In fact, we need to show that for the given input sequences.
tne expected sequences satisfy the system of causal equations. We demon-
strate this procedure in Section 3.3 by verifying the operation of a sorting

network for which we could not soive the system of equations explicitly.

3.1. A matrix-vector multiplication network.

in [31]. Kung and Leiserson suggested a systoiic network for the com-
outatuon of the product y=Ax of a matrix A and a vector x. Here, we
modity this architecture for the case where A is a square, symmetric matrix.

The goatl of this modification is to reduce the number of input items to the

netaork by only supplying the elements in the upper haif of A. This has

-

L.

YN
”
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the effect of reducing the /O bandwidth of the network which is usually a

limiting factor in VLSI architectures.

The modified network will be formally specified using the abstract model
of Chapter 2. Moreover. the sequence notation will provide a clear and
accurate representation of the input required for the proper operation of the
network including information about the relative timing of the inputs on the
different links. We will also apply the technique discussed earlier of obtain-
ing the network /0 description and then of verifying that, with the appropri-

ate input, the network does produce the elements of the product vector y.

in Figure 3.1, we show the graph of the muiltiplication network for
matrices of order k. It consists of 2(k+1) internal nodes, each labeled by
a pair (.g). 0<i<1, 1<g<k+2. The set of colors CE has three elements.

namely. s. r. and 2z, and the coioring function co/0 maps the edges 10 the

colors as shown in the figure.

Figure 3.1 - The graph for the matrix/vector muitiptication network

The principle of operation of the network may be explained by decom-
posing the product vector y=Ax into two vectors y" and y’ such that
y=yu+y’. More specificaily, if ai i and x,. denote the elements of A and x.

respectively, we write the elements of yu and y’ as foilows:
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0 i=1
/
Y, © 3.3.a
i-1 i-1
r a X. = ¢ a. . x [=2,¢ 0.k
i=1 b 7 j=1 14 i
k
v e
Yi = L &, % i=1+- -k (3.3.0)
j=i
v =2
The elements of y are computed on the sub-network composed of the T
cells corresponding to nodes (0.1), ---, (0.k) in Figure 3.1. Similarly. the Q
\.
elements of yl are computed on the subnetwork composed of the cells
corresponding to nodes (1.2), ---., (k). The cells (0.k+1) and (1.k+1) <)
are delay cells that align the corresponding elements of yu and y’ such ’
that they can be appropriately added in the cell (0.k+2). The operation of ~;
n
the network is formally specified by providing. for each cell. a set of equa-
tions relating its output sequences to its Input sequences. For the nodes
in the homogeneous set {(0.g) @ g=1,-:-,k) the generic causal equations _
b |
are =
o =n? o, +p,_ O &4 g=l.---.k (3.4.2) =
0.g+1 0.9 0.g 0.g ’ ’ s
Po.g+r = 0 Pog g=1.-+-k (3.4.0)
= = ° e .':!
c]'g n ‘o,g g=1. k 3.4.0) =
)
where the operator O is an element-wise operator obtained by extending the .
.’:
usual multiplication operator * from A to FIo by adding the following rule: o
8 0x =x 008 =206 if x#0 and 06 00=0006 =20 T
:,:::jj Note that O is not a O-regular operator in the sense defined in Section
el ;
: 2.1. However, because the result of the multiplication of any unknown -
r@
,r'“ number with zero is zero, the operator O may be naturally implemented by
»-'p.'.‘ .
e using a standard multiplication circuit and treating 6 as a don’t know item
s
}‘-'; rather than as a special symbol. With this, each node in the above homo-
+ @ .-
:_’—: geneous subD-network represents a multiply/add cell augmented by an
"A.':- -
ot x
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Similarily. the cells corresponding to the nodes in the homogeneous set

{(h.g) . g=2.---.k) are specified by

o o
g o 1

2
0 %1g g=2.-+ .k (3.5.a)

0 (]'ql g=2.°°".k (3.5.0) 1

°1,g+1 =1

Prger =Py 4t Oy 4

Finaily, the cells (0.k+1). (1.k+1) and (0.k+2) are specified by

Oo.k+2 = nk %0.k+1 (3.6.2)
Pok+2 = T Py ks (3.6.b)
Pok+s = T 1Pgyep * T k42! (3.6.0)

The system composed of the equations (3.4), (3.5 and (3.6) describes
the operation of the entire network. In order to obtain an explicit form of
the network 1/Q description. we should solve this system and obtain a direct
relation between the network output sequence of interest. namely Po k+3°
and the network input sequences pO'.I, 99 1 p1l2. 01'2 and cO,g'

g=1.---.k. For this, we start by solving (3.4.0) and (3.5.a) to obtain

-1
Pog = 9" 054 g=l.- -k
0, =n2@ 2, =2, K
1.9 ‘o 1.2 g=e. :

We then substitute these formulas and equation (3.4.c) into (3.4.a and

(3.5.b). which gives the following difference equations

= 2 g_.] = ...
%.g+1 = n ["o,g + g<g-2)p°" 0 Co'g] g=1. k (3.7.a)
p]'g +1 = 0 [p]’g + no 0-"2 0N Cogl g=2.- .k 3.7.0)

The solutions of (3.7.a) and (3.7.0) may be obtained by applying Lemma
1 in Appendix A. More specifically, with c¢=2. s=1 and r=k+1 in Lemma 1 we

get

2j k=i
Po.1 0 CO,k-/‘ﬂ] (3.8.a)
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while for the values c=). s=2 and r=k+) in the same Jemma. we obtain

k y
_ = of! i=1 2%k=j)
Presr = Pt /)=:2 n M, 0120 0 g, j4p) 8D 1
Now. from (3.6) follows the network 1/0 description in the form ‘{
A
k+1
n 2 3.9

Po.k+3 = Prak+r v 1 90 449

where P1k+1 and Og.k+1 2T€ given by (3.8.a/b).

For the proper operation of the network. the input links S9.1 and M2

are permanently set to zero, that is we always have

9.1 % P12 T ¢
where ¢ is the zero sequence defined in Section 2.1. With this, the equa-

tions (3.8) simplify to

k
= 2j k=i
o
0.k+1 IE'I 071 7 pgq 0 Lo hojer! (3.10.a)
k
= -1 2k-j)
Pi ks 1)52 N mo %12 on co.k—i+2] (3.10.0)
.:'1
.
In order to perform the matrix/vector multiplication. the eiements of the «
(g—l)St off-diagonal. 1<g<k. of the matrix A should be supplied on the
network link ZOg' followed Dby an appropriate number of zeroes. More .
specifically. the input on these links should be ]
2(g-1
=N =1,- .k @.11.a :
‘o,g ag g 3.11.a A
1
where T(ag)=k and
e a _ t<k-g+1 i
@, @ = 4 e
e ¢ Lo t>k-g+1 '
S "
i.‘ .\l --
.:j.j_-j. Moreover. the elements of the vector x should be supplied on the links v

r and Sy accorging to

0.1

Poq = & (3.11.0)
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o 3
oy 0,5 = N ¢ 3.11.0)
*\.l .
(- ' where T (&)=k and £(t)=xt. Note that S, 2 carries the same information as
RO . .
A o 1 delayed by three time units. Hence, by adding appropriate delay cells,
#!.n ‘.:‘ .
‘:} > we may replace these two input links by only one link.
'-:4
: ;_ As the next step in the verification technique we have to substitute the
._';"{ " above input sequences into the network (/O description and to demonstrate
st e that the sequence Po k+3 does contain the elements Y;. i=1,--+,k. of the
L - .
<,
\ product vector y. We first substitute (3.11.a/b) into (3.10.a) which gives
\'r\ L:\
N Ko 2f k- 2k
ey =
\::\ %0.k+1 i§1 o’ m § 0N ak-iﬂl
- L =
:‘:-* ‘.:' = nk k n[ [e 0 nk-l ]
S @ L T -j+1
X% /-}‘
B 2k
RN =0 L 8
RN ':._ j=
N -k .
ol where Bl. =N 5°°‘k-m' that is T(Bi)=k and
‘ - = ]
E Ettk=j) ak—[ﬂ(” 8 rek-j “tek-j t<y
e () =
S %) .
:-‘,- :'.' 0 t>g
LI -
s

The element-wise addition of the sequences Bi' f=1,--+k in (3.12)

“e then gives
RO 2k _u
Sl - (3.13)
ORI O9k+1 =0 7
o u u _ k _
DR where T(n )=k and n ) = [ ﬁl.(t). However, for ;<t. we have B/‘“‘O'
o =1

SO from which we get
e
M . K
.: =

e O = L8 b Xakei
AR j =t

K

' = a X = yu

gt t.qg 'q t

';
S'.\‘i"-
NN

A

LAt

Q. 9 where in the last line we replaced the summation index ; by g=tt+k-j.

oA

P’"-l':: Analogously. we substitute (3.11.a/¢) into (3.10.b) and find. after some
DS
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sequence manipulation, that

_ k)
Prksr = 0 " (3.14)

where T()=k and n’(t)=y:.

Finailly. from (3.13) and (3.14) in (3.9) we obtain the output sequence

_ _2Kk+2
Pokes = N 7 (3.15)

where T()=k and n(t)=y,. the " element of the product vector y=Ax.

This verities that the network will indeed produce the elements of the vector

y according to the timing specified by equation (3.15).

Remark : In some applications. as in the one described in section 9.2. the
elements of the matrix A cannot be supplied at the high rate specified by
equation (3.11.a). More specificaily, we assume that the input sequences on
the links zO.g' g=1.---.k have the forms

. 20@-D _c-1 o
Co,g =N 6 ag g=1, k

for some integer ¢>1. In this case. the network may still operate correctiy
if we change the period of the synchronizing clock such that the new
period is equal to c times the old one. An aiternative solution is to
change the delays within the computational cells in order to ensure that the
elements of the vector x indeed meet the corresponding elements of the
matrix A at the appropriate times. This is accomplished by replacing the
specifications (3.4), (3.5 and (3.6) by

2¢

UO.gH = nc [°o.g + po’g 0 Co,g] g=1.---.k
Pog+1 =0 Pog g=l. -k
g = ”2c‘o.g g=1.c- .k
ol,gfl = ﬂg a]'g g=2.'°-.k
pl.gﬂ = N [p1.g + °1.g (o) c].g] g=2,"--.k
%0.k+2 = “c;’o.kﬂ

Poktz = Pram

" g T ‘-‘.'-. \-..? A

s
iy,

el
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Pok+d = T 100 440 t Po k0!

n addition, the timings of the data on the other input links r and

0.1

PN TR

S.l 2 have to be moditied accordingly to

_a

c-1
Po.y = © ¢
o 2¢tl _e-1
%129 © €

Anlionleda SRS,

Foliowing the same steps as in the case c=1, we may obtain the out-
put of the modified network as

_ ~2Ckt2 _c-1 ‘
Po.k+s = 1 e K ;

which is a generalization of (3.15) for the case c31. i

3.2. A back substitution network. q

In this section., we apply our verification technique to a systolic network
that contains two different types of computational cells, namely the back-

substitution network suggested in [31]. This network performs the back sub-

Al M oo

stitution operation to solve the linear system of equations

L u =y 3.16)

where L is an nXn non-singular, banded. lower triangular matrix with the f

(haifh~band-width k+1, and y is a given n-dimensionai vector. The solution

of the linear system (3.16) is given by the formuia:

[ Y / I/‘.i i=1
=1
u, :ﬁ (y, - ‘);1 Ii.i—i u,,_l.) / ’i.i 280 <k
| / k
. (yi - ; ,i,i-i u,_i) =y k<isn
"=ln th

where II. j is the (i.j) element of the matrix L. and y; and u, are the
elements of the vectors y and u. respectively.

Figure 3.2 shows the graph of the suggested network. it 1s a 2-

partially homaogeneous network. composed of k muitiply/add (M/A) type ceilis.
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. Figure 3.2 - The graph for the back substitution network ot
g and one subtract/divide (S/D) cell. The computational celis are labeled by oo
0N <3
N integers such that the cells 1 through k are of the M/A type, and the cell 7
e

» 0 is the S/D cell. As for the I/0O cells. we must be careful to assign
v -
s iabels to the sink cells because these tabels will be used to identify the

S

= network output links. The labels given to source nodes are immaterial as e

.
" they do not affect the verification procedure. and consequently are not
; shown in Figure 3.2. §
=
oy in the regular layout shown in Figure 3.2, the edges directed to the
::',f'. sguth, north, east and west are given the colors a.,b.r and s. respectively. -

) s
o The set V, of interior nodes in G is divided into two homogeneous subsets
o v/ =(0) and VZ=(iii=1.---k). The operation of the cell represented by

. node ‘0’ is described by the causal retation
-;:_': Py = N U8By - 04l / aol 3.7 .
:::i: and the operation of any M/A cell represented by a node i, 1<i<k. is
‘ described by the generic I/0 description -
,_ Pig1 = O P i=1,+ 0k 3.18.a ::.:
AN . s
“a 0,y =010, @a * p) i=1,++k (3.18.b)
A -
o where the @ was defined by the formula (2.2). -
x':
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in order to soive the system of difference equations (3.17), (3.18.a/b).

we first write the solution of (3.18.a) as
p'. =1l p] 1<i Sk +1 (3.19)
from which we find that
= " 3.20)
Pra1™ Py .
Substitution of (3.19) into (3.18.b) then gives

0,_= 0 (0, ® 4 3.21)

where 4, = a; * [ﬂi-] pll. Using an inductive argument similar to that in
Appendix A for the proof of Lemma 1, we can show that the soiution of

3.21) is

Y p.'l (3.22)

K kK
=1 o, ® L  la, * n
° S /

k
where ¥ is defined by ' n;
i=1

=Myt Ny b D

For given Py the network output sequence Py +1 is easily obtained
from (3.20). The next step will be to eliminate o, from (3.17) and (3.22)
and to obtain Py explicitly in terms of the network input sequences O Bo
and a;. j=0.---.k. Unfortunately, if we try to soive (3.17) and (3.22)
simultaneously, we will obtain a recursive equation in Py which is very dif-
ficult to manipulate in general. For this reason., we consider oniy

specific forms of the network input sequences. namely those required for

the proper operation of the network. They are given by

a, = ot e y 20, .k (3.23.a)
By = o e (3.23.0)
o, =6 (3.23.0)

with T(k/.) = p-i, T() = TM = n and
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1<t <n =i
1<t <n
1<t <n

Substituting (3.23) into (3.17) and (3.22). we find that

oy =nun’ en - oy~

X k
oGp=0 98 t® L
i=1

Since 6-x=06 for any xeRo. (3.24.3)

such that

whence, by (3.24.b), we find that

2/ tk

k
9] Gkol

2j-1
e\ *n Py

K ,
g, =0 e ® L an, e

i=1

/

40

(3.24.2

3.24.0)

implies the existence of a sequence ¢

(3.29)

where we used property P4 to interchange n2’ and ©. If in addition we let

K
Y= . @® C N [xi‘fl
i=1

then we can substitute for % and Py in (3.24.a) and obtain

kK+1

e t=nun*en-n

which reduces to

€=[7)-'yl/xo

For an explicit description of the sequence Y. we need

(3.26) more closely.

oo,

/
where

T(u,.) = min( T(XI.)
and

ke'y]/nkex

T < n-j

(3.26)

3.27)

to examine

We start by evaluating the product term, namely

(3.28.a)

b S

H

P

)
Jelsy

v
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Il.l.(t) = Rl.(t) 8 (3.28.b)

This enables us t0 rewrite (3.26) as
ko
Y= .@® L N “j (3.29)
i=1
From (3.29) and the definition of the ‘@ operator. we conclude that
T(y) = max(T (L) , T(u’.)ﬂ‘} = n. and hence from (3.27) that

T = minlT(my . Ty . T(xo)} = n,

With this in (3.28.a), it is easily seen that T(ul.) = n~j. Now. we apply
property P20 to (3.29) and explicitly describe ¥ by

T =T =n

andg
0 t=1
t=
yi) = u.(t=j) t=2.3.....k
i=1 !
K
r u.’.(t-i) t=k+1.k+2....n
S

Then finally. with these specific descriptions of 7. xo and 7. the expli-

cit form of the sequence & in (3.27) is found to be

£ = ) - ya) / A O,
that is
e /et t=1
t=1
§i) = O, - ’_E] EW=1) 1y ) 7y 2<t <k
k
(yt - /E] Ei-j) ’t,r-i) / /t,r k+1st<n

A comparison of this expression with the formula given in the beginning
of the section for the solution of (3.16) shows readily that

_ 2kt
pkﬂ'n e ¢

wnere T (&)

n and §u) = u

¢




3.3. A sorting network.

The sorting network [32] described here accepts an indexed set 4 |
x=(x],---,xk) of k aifferent real numbers, X, €R. ieK=(1,...k}. and produces
as output the same numbers sorted in ascending order. Figure 3.3 shows \
the general graph of the network and the labels given to each node. In -

the figure, the edges directed to the right and left are colored p and s.

respectively.

For any jeK, let y],-“,y,. be the result of sorting the | elements

Xy o X of X in ascending order. Then for all (i.p) of D={(.jpeKXK; O

1<i<j<k}. the ranking function fx:D-oX is defined by fx(i.i)=yl..

With this, we will prove that if the network input sequence . is given
by
+ e
" Py .E "k-1l P2 P; .E p?'-l pi .a Py .i ks
k¥l Sk41 Sk k-1 Si¢1 Sy 53 52 )
=
~
Figure 3.3 - The graph for the sorting network "

m, = 6 ¢ 3.30)

where T(§) = k and &) x, ., then the network output sequence O

t k+1

has the form

O™ N e n (3.31)

where T(n) = k and nt)

fx(t,k).
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The network considered in Figure 3.3 is a 2-partially homogeneous net-
work. The cell labeled ‘1’ is a simple latch cell whose operation is

described by

0, = 0 7, (3.32.a)

while the 1/0 description of the cells i=2...k is given by

e m_y = n maxo(ni,ai) (3.32.0)
N Oiy = 9} mmo(rrl.,oi) 3.32.0)
where maxo and mino were defined in section 2.1. In other words, the

A
LI

cells i=2,...k are comparision cells which operate as foliows: At any time t.
it neither one of the two inputs ol.(t) or 1rl.(t) is a don't care element 6.
then the cell compares the two inputs, and produces as output at time t+1,

the largest and the smallest of the two numbers on the links p,_y and

1
Si e respectively. However, if any of the inputs is &, then the cell acts as

a simpie latch ceil, that is, it o,(t)=o or rrl.(t)=o then

m.

o i@ = m@)  and ¢t = g,

%+
s To obtain the network /O description, the system of equations
—

(3.32.a/b/c) should be solved for a However, the recursive nature of

kt1
(3.32.b) and (3.32.c) makes this very difficult, if not impossible. One possi-

ble alternative is to suggest a tentative value for the sequences m, and O,
- and then to verify that these suggested solutions indeed satisfy (3.32). Of

course, any assumed value for n, should reduce to the input sequence

= (3.30) for i=k.

Let us assume that m, and o, are given by

k=i

m =08 1<i <k (3.33.2)
y k+i=-2

a.
|
'@ 0, = N e & 2<i <k +1 (3.33.0)

where T(a,) = T(ﬁl.) = kK,
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X, 1<t<i
max(xt 'fx t-i.t=1)} i<t <k
and
f (t.t+i=2) 1<t <k +1-j
8@ = { x
f .k k+1-i <t<k

It is very easy to verify that (3.33.a) reduces to (3.30) for isk. Hence. our
next step will be to check that (3.33) does satisfy (3.32). For i=1, (3.33.a)

reduces to

xt t=1
wo = |

maxa(xt,fx(t-'l,r-nl 1<t <k

Since fx(i.i) is the maximum eiement in fx] 'x2""'xi)' it follows that

Xy =fx('l,'l) and maxo(xl.fx(t-l,t-'l))=fx(t.t). Hence. we may write

a.l(t) = fx(t,t) 1<t <k

But from (3.33.b). we obtain for i=2

_ ~k

where T(Bz) = k and 62(1) = fx(t.t), 1Lt<k., which proves that
B, = a,. and hence g, = N my

The next step is t0 show that (3.33) does satisfy (3.32.b). For this. we
subtitute (3.33) into the right hand side of (3.32.b) and denote the resulting

sequence by p. This gives

o =n maxo(nk_' eaq "t %6 8) 2<i <k

Using property P4 to interchange ﬂz(l-n and © in the second operand of

maxo we obtain
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gy p=n"0"" ey (3.34)
ﬂ where v, = maxotai . n"' B;). By definition of max,. it follows that
_ T@p) = T(@p = k. and
.".
K J ) 1<t <i -
'y’.(t) = l
,‘!‘ max(ai(t).ﬁi(t-lﬂ)} i=1<t <k
. Hence with the definitions of ;) and B,(t) we obtain
X, 1<e<i-1
v, = (maxix . f ¢=it1.t=1) t=i
.. max(max(xt fx(t-l.t-'l)) fx(t-iﬂ.!-'l)} i<t<k
Because of max{ max{a.b) ¢} = max{a,b.c}. and fx(t-i.t-n < fx(t—
o it1.t-1). we may rewrite y; as
) X ISt<i~
'::~' 'yl(t) = Jl t
- max(xt fx(t-(i-l),t-D} i-1<t<k
E:; from which we find that ¥,¢) = @,_,(), and hence. because of (3.39) and
(3.33.a)., that p = mi_y This proves that (3.32.b) is satisfied for the
- values of 0, and m; given by (3.33).
- Finally. to cheCk that (3.33) does satisfy (3.32.c). we substitute (3.33)
=
into (3.32.c) and denote the resulting sequence by 7. This gives
N - i~
™ 7= amina*” o o' e 8 241 <k
: _ k=it , i=1
=N e mmofa‘. . N alJ
e
. in view of
: ) (=1 i=1
mmo(a,. Y B,} = N @,
_ where T(of,) = T(Bt,) = k and
o j minca =18, 1<t <k=u=1)
w0 =
o { 8, k=G=1<t<k
T |
we write
3

s
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r=ftith=2 g ®, (3.35)

iyy: 1O

From (3.35) and (3.32.c). it follows that 7 = Oy ONly if 0, = 8
prove this, we substitute the definitions of a/(Hi-l) and Bl‘“ into wl.(t)
and obtain

4 =1 fx(t—1.t+i-2)) . fx(t,t+i-2)) 1<t <k =G =1

{ min{max{x
fx(t,k) k=G -1)<t<k

npl.(t) =
But from Lemma § in Appendix A, and the fact that fx(t,t+i—1) = fx(t,k)
for t=k-i+1. we may write npl(t) as
{ fx(t.t+i-'l) 1<t Sk =i

wi(t) =
fx(t,k) k=i <t<k

it follows that @) = B;,1®) and therefore that 7 = O ey This completes
the proof that the sequences 7, and o; of (3.33) indeed satisfy the system
of equations (3.32).

Now that (3.33.b) is known to be a valid formula for the sequence ;.

we can easily obtain the network output sequence o, ., Dy setting i=k+1.

This gives
2k -1
%41 = 0 ® B
where T(Bkﬂ) = k and Bkﬂ(t) = fx(t.k), 1<t<k which is identical with

the expected output sequence (3.31).

After illustrating our verification technique by various examples. we
investigate in the next section the solvability of systems of causal equations.
Clearly. this is a crucial issue determining the general applicability of the

technique.
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3{\- > 3.4. Analytical Solution of Systems of Causal Equations.
QN

(a E In this section we discuss the existence of anaiytical solutions of sys-
b0 tems of causal sequence equations. Here we use the term sequence equa-
-:\-: \ ’,‘.

N tion in a restrictive manner to indicate an equation in which the left side is
“ow T

" [ a sequence and the right side is a sequence expression. This is the only
SN type of equations needed for modeling the operation of systolic networks.

e te LN

.'_\‘:\

13- - . s e . . .

:;.,,Z o We Dbegin by defining the dependency matrix which describes the struc-
i) .

. ture of a given system of sequence equations. Then an iteration operator ITI
NENEERE

e e is introduced and. with the help of this operator, it is shown that the solu-
T

":-:‘_‘:- . tion of any system of causal equations can be expressed in analytical form.

Finally. we present some examples that demonstrate the applicability of the

iteraton operator for the analytical verification of systolic networks.

3.4.1. Definition and Existence of Analytical Solutions.

in order to discuss systems of equations on sequences without referring
to the network that are modeled by these equations, let Q denote the set

of ali sequences that appear in a given system of sequence equations.

This set Q s partitioned into three disjoint, mutually exciusive sets, namely,

.-;_j';_. . the set of input sequences Qp, the set of output sequences Qo and the

set of intermediate sequences Qr' Here. an input sequence is a sequence
= that does not appear on the left side of any equation in the system, an

output sequence is a sequence that does not appear on the right side of

S any equation in the system, and an intermediate sequence is a sequence in

W Q which is neither in op nor in Q.

SR Accordingly. a sofution of the given system of sequence equations is

) -~ defined as a set of formulas. involving only well defined sequence operators.
SCON that expucitly describe the sequences in Qo in terms of those in Op.
DA S
CASIN Here. a well defined operator is understood 10 mean any operator whose
o
.. ¢

PO - . ~
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b . .
R image can be obtained from its operands using a deterministic expression.
et
The operators defined in Chapter 2 are exampies of well defined operators.
Let . an inaliti
qp 9, d q, be the cardinalities of the sets Qp. Qo and Qr.
respectively. We enumerate the sequences in Q by integers
i=1.- --.qpfqofqr. such that for any sequence eieQ,
E,- €Q, if /(Qo
€’. €Q, if q°</<q°+qr
El. er if qo+qr<;<qo*qr+qp

The structure of the system of equations can then be described in
terms of the dependency matrix A which is a binary, square matrix of orger
i &

qo+qr+qp with the elements

1 if E'. appears on the right side of the equation describing ei.
a , =

i 0 otherwise.
For example. consider the following two systems of sequence egquations: we
System S
G =0 - &g
- g
£ = Tpley - &5 =
€3 = Taley - &p
54 = 1‘4(‘55 . 57)
55 = I‘5(£6 . 57) .
5 System S
)
x“:: This is the same as system S except that the last equation is replaced by
i 5
[.._x = - N
+ €5 = Tslég . & . &

R

Here T, i=1.---.5 and T, are sequence operators.
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In both systems, we have Op = (56.57), Q (51.52) and Q, =

0
(£4.8,.&5) and the dependency matrices are

e
) _'- S _\.A
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(0 0100 1 0] (00100 1 0)
0001100 0001100
0001010 _ 00071010

A= 0000101 A= 0000101 (3.36)
0000011 0010011
0000000 00006000
0000000 000000 O]

for S and §. respectively.

From the definition of the input. output and intermediate sequences. it

is clear that any dependency matrix A can be partitioned into the following

form:
[0 Asr Ao .p’
A = 0 Ar,r Ar.p
o o o |
where the dimension of the sub-matrices Ao,r' Ao.p' Ar,r and Ar'p are
qpxqr, qp><qo. q.%q, and q_xq,. respectively. ang each O denotes a zero

sub~matrix of the appropriate dimension. This decomposed form of the
matrix A shows that our ability of expressing explicitly the sequences in C)o
in terms of those in Op depends only on the structure of the submatrix

A . In other words, if Ar r is a strictly lower or strictly upper triangular

r.r
matrix, then Dy back substitution. we can easily express the sequences in
Or in terms ot those in Qp. This in turn enables us to relate explicitly
the sequences in Oa to those in Qp for any form of the submatrices Ao'r
corresponding to the matrix A in

and A For example. the matrix A
0.p r.r

(3.36) is strictly upper triangular. Hence. for the system of equations S. we

obtain by back substitution

Ty Teleg. b)) . £ = Alegép
Ta¢ Aylég8)) . &g = Aglég.é)p

€4
€3

which leads to
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€ = T A3UgEp . &g = Mg 8y "
§r = I‘2( A4<66.£7) . A5(£6,£7n = A2(56.57) -
where the operators AI‘ I=1....4 are defined in terms of the known sequence S
operators I';. and hence are themselves well defined sequence operators. j

It shouid be noted that the structure of the matrix Ar,r depends pri-
marily on the numbering of the sequences in Qr' More specifically. when- 1
ever there exists a numbering that results in Ar,r being strictly upper or .
strictly lower triangular, then. as stated. it is possible to solve the g
corresponding system by back substitution. This situation applies only if the ’
system of causai equations does not contain any direct or Indirect recur- 7

sion.

On the other hand. if the system of equations does contain recursion.

then for any numbering of the sequences in Qr' the matrix Ar.r cannot be -
strictly upper or lower triangular., and hence. the simple back substitution 3
scheme cannot be carried to completion. For example. in the system of ;'
equations S, we cannot express the sequences §5 and £, in terms of £g ]E
and ¢, unless we have a method of solving the coupled equations -
54 = A4(£3,£6,£7) 3.37.a
€3 = Dglg .69 (3.37.b .
where R, and A, are well defined operators.
Yet, in the special case when the operators 1-\3 and 1_\4 are causal ;:
operators. it is possible to calculate the sequences ¢, and ¢, for any
given specific sequences 56 and £7. in other words, the equations ~—
(3.37.a/b) have always a solution. This is an indication that our inability to o
express this solution analytically is due to the fact that our notation -
suppresses the time dimension from the sequence equations. This motivates :!
the introduction of the iteration operator. .
A
IO Ut Dol s el T S T N I S L R
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3.4.2. The Heration operator.

it can Dbe easily shown that the solution of any coupled system of
equations may be obtained if we have a means of solving recursive equa-

tions of the form
{ = rtc.e].- . -,én) (3.38)

where I' is some sequence operator. For example. the soiution of the cou-
pled system (3.37) may be obtained if we can solve the recursive equations

resulting from the substitution of (3.37.b) into (3.37.a). namely
: {4 = r4(r3(e4.56),e6.e7) = A(£4,e6,e7)

In general. the solution of (3.38) may not be well defined. However,
systems of sequence equations resulting from modeling systolic networks

have the nice property that they contain only causal operators. Hence. we

E- wiil consider (3.38) only for causal operators T.

Theorem 3.1: Given a causal operator I‘:[ﬁol"”-‘ﬁo, the solution ¢ of
e ¢ = TQhq-n.g,) (3.39)
E is well defined.

Proof: We prove this theorem by means of the following procedure for the
computation of {:
pe ALGY

.
-. =

1)Letd0=6.

SR 2) FOR k=1.2,--- DO
a . .
.;.-_‘;: 2.1) Compute the sequence a, as follows
NG
e a, _, t<k
b AT
....".' ; - e o 0 =
._:_::_., = a ) = (T, _;.&;. &1 t=k

' @ o) t>k

2.2) Set {(k) = ak(k).
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In order to prove that the sequence ( computed by ALG1 satisfies (3.39)

we define the step operators Sk:nb "Ro for k=0.1.2,-++ by

and. for k>0. by

¢t if 1<¢t<k
[Sk i) =
o] it t>k

With this. it is directly seen that, for any t, @t = [SkCI(t) and hence

that @ = Skc. From ALG1., we then have

(@) = at(t) = [I'(St_.l C,£],'-'€n)](t) (3.40)

However. the definition of causality implies that () may depend only
on any element [St—‘l {1G) with i<t; that is, we may replace Seq € in

(3.40) by ¢{. This gives
() = [I'((,&].' . '.en)l(t)

and proves that the sequence ( computed by ALG1 indeed satisfies the
equation (3.39). =

Theorem 3.1 proves the existence of a solution of recursive causal
equations and gives a procedure for its computation. Our next goal is to

provide a suitable notation for expressing this solution.

Definition: Let r':[ﬁol"”-ﬁ be a given causal operator. The iteration

0

operator ’71 applied to the image sequence I‘('n1.-- °'77n+1) with respect to
r

any of the arguments 7 . 1<r<n+1 shall be defined by
C = [nr r(-n“. . ..nr'. . .'nnf'l)

where for any t

(@) = [F('n],° LRI AR '.nn*.i)l(t)

S5
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« e
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‘ ) Using a procedure similar to the one given in the proof of Theorem
{ - 3.1. we can show that the image sequence ( in the above definition is well
)

2 defined. Note that the sequence 7, in the combined operator
S

. N et —— —

RS ’7) l":[Ro]"-oRo is a dummy sequence which is needed only to indicate the
o, r

. l.. argument of T to which the recursion is applied. In other words. the argu-
\ ments of Inrl" are only 1)."~ nr—l'"rﬂ' R e With this definition,
'.:':' .‘;I'- we can now prove the following theorem
E Theorem 3.2: For any causal operator I‘:[ﬁolnﬂ-'h'o. the solution of the
L

,, .

. recursive equation

- ¢ = TQ.&yw o)
o is given by

> :.

o -

& ¢ = fy TOgq o)

3
.

Proof: From the definition of the iteration operator we obtain, for any t#1

(@) = [In l'(‘n.f],' . ',£n)](t)
= [T(C,i]n . °.£n)l(l)

WO which directly implies that
SR ¢ =TW.&.--- 8@
Y - Theorem 3.2 provides a means for expressing the solution of recursive
RO causal equations. Its application to the verification of systolic networks,
;::_ ‘L; however. depends on our ability to manipulate expressions that combine the
@ iteration operator and other sequence operators. The following theorem
"
\ W provides the basis for such a manipulation. |
o !
SR =+l _= = =
. -.: Theorem 3.3: If AR <R, is a causal sequence operator. and Q:Rb-'Ro is
@ t 4 fe] )
>/ any sequence operator with the property that
R
e, v
I
J'_-
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AL, @&,.-- *Ré)) = @ A’(c,e],- € 3.41)
where A’ may or may not be identical to A, then

I?I AM.®E,.- ey = O IT) A&y .- € (3.42)

Proof. We write the right side of equation (3.41) as ® . where ¥ is given

by

Y= IT) A('I‘),f.l.'°-,€n)

By Theorem 3.2, we know that vy also satisfies

Y = I_’7 A(‘Y.i.l,---fn).‘

that is

v =09 I77 A'(‘V.€1.'°°.£n)

By the hypothesis (3.41) this reduces to

¢ v = /Tl A(W.QE1."'.0£”)

which by Theorem 3.2 has the solution

® v = l‘ﬂ A(n'°£1'“"°€n)

Evidently. this is equal to the left side of equation (3.42). ®
We next give some examples that illustrate the applications of the itera-

tion operator to the verification of systolic networks.

3.4.3. The iteration operator in the verification of systolic networks.

In this section. we present two examples for the application of the
iteration operator to the derivation of the I/0 description of systolic networks
that are modeied Dby mutually coupled systems of equations. The first net-

work is the back substitution network that was verified in Section 3.2 for

=]

specific input sequences. Here, we will derive an explicit /O description for

b

[
P
v
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j this network and show that the iteration operator does simplify the verifica-
* . tion of this network. The second exampie illustrates an important fact.
"~.: ’ namely that even though it is aiways possibie to obtain analytical formulas
L

'\‘.: X for the 1I/0 description of systolic networks, those formulas may sometimes
-~

be very long and cumbersome to a point that they are complicating the
N L
L verification procedure rather than simplifying It

.- ) Example 1:

.':;. ;';.‘
' Consider the back substitution network of Section 3.2. In that section,
\ -

AN we did not obtain explicitly the network I/O description because of the cou-
- pled equations

N ::\

A ‘.

: Py = (B - gyl / apl (3.43.2
= k ,

RO o, = nfo, @ T a @ o ! p,l (3.43.0)
0 K i=1 i 1
S However. by substitution of (3.43.D) into (3.43.a) we may obtain
( W]

Ny K k j /=1

- Py =N B, - No, @ T Nia, * O 'pll /7 a,]
AR, ] 0 k i i ] 0

A which by Theorem 3.2 has the solution

§ I
.‘_.' ._j X k l I-]
:.Z; Py =, A8y -0, @ ); N [al. * o wh /oagl
SR e I—]
S B

f T and leads directly to the explicit 1/0O description

] -

N k k A = (3.44)
S . - - z .
o |
A Equation (3.44) describes the output sequence p, ., in terms of the
@,

_.f:f input sequences a;. i=0,-+-.k. and o,. In order to verify the network for
e the specific input described by equations (3.23), we substitute these
Sl sequences in (3.44). This provides

@
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.j:-::j:' and now the application of Theorem 3.3 for factoring a**le from the
S

[ operand of ’w gives

29"

& k

| R e, ,

X Peyr = 07T, - v e T oaln, + wm /g

-..'}. /=1

. _ 2kt

EhE =N o ¢

where

K .
£ = @) - (L) & | n’[x’. *EN N AG®
i=1

This leads directly to the expression for &(t) derived in Section 3.2.
EXAMPLE 2:

In this exampie (Figure 3.4), we consider the special case k=3 of the
sorting network presented in Section 3.3. The operation of the network is

modeled by the causal equations

00:/(
s )

Figure 3.4 - A special case of the sorting network.

3 :\j
. - 3
O o, = A m, (3.45.2)
_:“* Oy = N mmb(rr2 . 02) (3.45.b) -«
04 =N minb(ﬂ‘3 . 03) (3.45.¢)
m, =0 max, (7, . 02) (3.45.0)
.:" n, = N max&(ﬂ3 . 03) (3.45.e) .
.\ '
A In order to express the output sequence %4 in terms ot the input
AN
e sequence 7,. we start by solving (3.45.a/d) for o, By Theorem 3.2. g, is
o :
o, given by -¢
SN
_._:.:_: _ 2 .-
::-_..', 02 = ITI N maxb(ﬂ2 . m 3.46) :}:
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We then solve (3.46) and (3.45.b/e) for o

3 and substitute the result in

(3.45.c) to obtain the network I/O description in the form

= 2
O, ﬂmino(ﬂ3 . I( nmino(nmaxo(ﬂa.C) . ’ﬂn maxa(nmaxo(na,o . M) 3.47)

Aithough (3.47) describes explicitly the output in terms of the input. it
may be very difficult to use it for the verification of the network for given
inputs, especially if the size of the network k is t0 be kept as a parameter.
As a matter of fact, the non systematic approach followed in Section 3.3
proved to be more effective for the formal verification of this sorting net-

work.
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4. COMPUTER SOLUTION OF SYSTEMS OF CAUSAL EQUATIONS. -
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. s
.:‘:.E‘j' it was shown in Section 3.4 that we can always obtain analytical solu-~
‘3..':' tions of systems of causal equations that modet systolic networks. However. ”
. our tools for manipulating sequences are still limited and. in many cases. a
.
\ we are not able to derive the output sequences Iin a form that may be
3 compared with the expected output of the network. In order to alleviate this ::3'
problem. we describe in this chapter a computer system that was developed f_::
for solving iteratively any system of causal sequence equations for specifi- ~
cally given input sequences. :
]
A simple janguage called SCE (Systems of Causal Equations) is used to -
‘e
provide the system of causal equations to the solver. It will be described :’f:
in Section 1. The equation solver itself represents a syntax directed inter- o
preter that executes any correct SCE program. This interpreter is outlined e
in Section 2, it reads the elements of the input sequences from an input
file, and calcuiates the eiements of the sequences on the left side of the "
equations specified by the program. -
it should be noteg that all data sequences considered here have infinite
iength but contain only finitely many elements different from the don’t care
element 6. Accordingly. an upper bound MAXT is assumed to be given Dby _
the user for the maximal index of non-6 data items of all sequences. |In _-
N other words. elements beyond MAXT in any sequence are considered to be ___
!‘ equal 1o 0. 5
- u
:I_: Aithough the generality of the solver ailows it to be used for wide
E range of tasks, its immediate application will be to simulate computations on :
,._ systolic networks. For this, an SCE program is written which implements --
o o
. D
‘-
,. —
2
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the equations for the operation of the network. and then, an input file s
created that contains the elements of the input data sequences. NOw a run
of the SCE interpreter provides the elements of the output data sequences.
This approach to the simuiation of systolic networks separates the internal
details of the simulator from the concern of the user. It aiso has the
advantage of allowing the user to begin with a partial solution of the system
of equations modeling the network and then to use the SCE interpreter on
the portion of the system that could not be solved analytically. As an
example. we show in Section 3 how the operation of a network for the LU
decomposition of a symmetric banded matrix may be simulated by means of

the SCE interpreter.

4.1. The SCE language for specifying Systems of Causal Equations.

The SCE language is a simple expression language augmented with
some input/output facilities and looping capabilities that provide for efficiency
in the writting of programs. In its current form. SCE may be used to
modei the operation of a special class of systolic networks in which the
units of information are real numbers. However, by the addition of new
rules to the grammar, it is possible to modei other types of systolic net-

works at higher or lower levels of architectures.

By tne first rule in the grammar given in Appendix B, it is readily seen
that an SCE program consists of the following four parts: 1) The declara-
tons. 2) the input part. 3) the programs body, and 4) the output part. In

the rest of this section. we will discuss the semantics of the language.

Terminai symbois 1n  SCE (see Appendix B) can be classified into four
categories. namely. special sympols (e.g. +. - *. ..). reserved words (e.g.
SOR. QUT. ..). gentifiers and constants, where a constant is either a posi-

uve integer Or a positive real number written in floating point format.
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> &
{ In order to ensure a clear distinction between identifiers and reserved i
DEY L
: words in SCE. we have chosen ali the reserved words in the language to
~ .
:3::;.' start with capital letters. On the other hand, any string of aiphanumeric 4
8- -
5 characters starting with a lower case letter can be used as an identifier

- . . "
i with the understanding that only the first six characters are significant. N
Nt
\":t:: Identifiers in SCE should be declared in the declaration part of the program
. ._;J
B to be of one of the following types:
\

-_~':-_-j 1) Parameter (rules 3-7): A parameter is assigned an integer value at the N
\‘p time of its declaration and this value is substituted textually whenever the

A ~
L identifier appears in the program. hy
s ,

RN 2) Index (rules 8-11). An index in SCE is an integer variable used in loop .
LIS N
St R
::f-:-:' control and in the selection of elements of sequence arrays. "
L 3) Sequence (rules 12-19):. Sequences are represented on the machine by i]
(
b vectors. An identifier of type "sequence" may be associated with either a =
SR
'-::Z-‘:_ single sequence (rule 16) or with an array of sequences (ruie 15). For R
M R
arrays of sequences. the dimension and the lower and upper bounds are

‘ 3
s specified in the declaration by enclosing these bounds in curly brackets. o
j:::ji: For example. the following SCE statement declares s as an n dimensional -
- sequence array K
::__;;, SEQN s(l]:u1 L e ,In:un)

~,‘-..
n_':--’ . th
e where I,. and u;. i=1,-++.,n are the lower and upper bounds for the i .
.; dimension. Bounds may be negative but should of course satisty the res- -
‘:.';j: triction that v, 3/,. We also note that there is no limit on the dimensional- ::'
_::_: [ \T.
) ity of an array.

o~ o
@ After the declaration of an array of sequences. its elements may be -4
::’_‘ identified  (rules 38-41) by using the usual selection  notation
e
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s(p] Lo, pn). where each P, has to fall into its corresponding range.
that is I’. <pi Lu;.

in the context of the abstract systolic model, a data sequence is asso-
ciated with a communication fink which is identified by its color and the
labeli of the node at which it terminates. In order to simplify the SCE
specification of a systolic network, we label the nodes in the network by
n-tuples of integers (v]."',vn) with some fixed n. This enables us to
group ail the sequences associated with the links that have the same color
in an n-dimensional array. Of course the color of the link may be used to
identify the array. With this. the sequence associated with any link yv1,...vn

is simply the etement (v.l,- . -.vn) of the sequence array yf).

Although this leads usually to a very clear SCE specification of a sys-
tolic network, it is sometimes inefficient because some of the.elements in
the array may not be used. For example. in the LU network described in
Section 3, a triangular array of sequences would be more space efficient
than the rectangular array allowed by SCE. In such cases, a more efficient
storage arrangement couid be obtained by applying any one of the tech-

niques used for storing trianguiar and sparse matrices (18]

In addition to arrays of sequences, the language allows the user to
declare single sequences. Three standard single sequences are predefined
by the language. namely the don’'t care sequence. the zero sequence and
the unmity sequence. The first two sequences were defined in Section 2.1.
The unity sequence 7¥. as its name implies, is defined by 7T({)=1.0 for
1$t<T(7) and arbitrary large T(7). The sequences O’. t and T are
denoted in SCE by the identifiers d. o and u. respectively. The user how-
ever may re-declare the identifiers d. o or u if he wishes to change their

definitions,

et
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The input part of an SCE program has the form of a single INPUT

statement (ruies 68-73). It serves two purposes: Firstly, it assigns an
integer value to MAXT. which specifies the number of elements to be con-
sidered in any sequence. and secondly. it specifies the sequences to be
read from the input file. Nested FOR loops can be used, to any level. in
specifying the input sequences. For example. in the program presented in

Section 3, the statement
INPUT (MAXT 18 . FOR i=0.3 r(i.1} );

specifies that MAXT=18 and that the input sequences are r(0.1}, r(1.1}), r(2,1)
and r{3.1}.

Similarly, the output part of the program takes the form of a single
statement (rules 74-78) that specifies the sequences to be printed on the

output file. Again, FOR loops are ailowed.

The body of the SCE program is the part that contains the specification
of the system of sequence equations. It consists of a list of statements,
where a statement may be either a sequence equation or a FOR loop that

encioses a list of statements. Each equation has the form

sequence specification = sequence expression

where the left side identifies a particular segquence and the right side is an
expression composed of sequence identifiers and sequence operators. Square
brackets may be used in sequence expressions o override the precedence
ruies defined by the grammar. Basically, in the evaluation of expressions.
the gramrmar associates the highest priority with the operators defined
directly on sequences. Next in priority is the scalar multiplication operator

followed Dby the operators ‘*' and '/'. Finally, the operators '+ and ‘-

are oevaiuated with the lowest priority. With these precedence ruies the
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_j °t sequence expressions are evaluated from ieft to write.

4
e
( . Aithough many other sequence operators may be incorporated into the
S language. we only allowed for the following operators:

'j:j. j'-f The positive shift operator n’. written in SCE as Ofr).

.

L The zero shift operator no. written in SCE as Zir).

f_'.t The spread operator o', written in SCE as Tir.

p The expansion operator Ellf written in SCE as E{r.k}.

- The accumulator operator A"KS written in SCE as Alr.k.s} and
\ —_

AT . . wil,.wn .

The multipiexing operator Mr written in SCE as M(r.wl,- .- wn).
_.-’. .

:fj',: . Frequently. the shift, zero shift and spread operators are used with r=1.
aa For this, the short hand notation O, Z, and T may be used instead of O(1).
fZ:Z Z{1} and T{1). respectively.

I TN
b~
o The two element-wise operators Ul and U2 of rules 47 and 48 have
{ u the same priority as the operators * and / but their semantics are not
.....

O specified by the language. As indicated in Section 3. Ul and U2 may be
N L defined by the user.

! ': Finally. we note that rule 55 restricts the operands of the accumulator
_\ operator to single sequences rather than sequence factors as is the case
'.:;:: i}: with the other operators. This restriction is not necessary and was only
) - imposed because it leads to a more efficient implementation of the SCE
AR interpreter. However. it should be noted that this does not affect the
-:jf - expressive power of the language because we can aiways define intermediate
".: - sequences 10 get around this restriction. For example. the sequence equa-
o ton
-~ Xt = O(2 x(i=1 + A3 [ yGi+l) = T x(i=1) ]

1 ‘

AN which is not permitted in SCE can be split into the two SCE legal equa-
\.'.: -

N tons

Cd -~
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viil yl+l} * T x(i-1}

02 xti-1} + A(1,3,1) viil.

x(i)

4.2. Overview of the SCE interpreter.

As is the case with most language interpreters. the SCE solver has two
distinct phases. namely. the syntax analysis phase which, using a parse tree
of the program. produces an intermediate language program. and the actual

interpretation phase which executes the intermediate program.

For the syntax analysis phase. we used the automatic parser generator
YACC [25]1 existing on the UNIX operating system to generate an LR(1)
bottom-up parser that accepts any syntactically correct SCE program and
generates an intermediate program in the form of a sequence of tuples. It
is basically a finite state machine with a stack. it scans the input program
from left to right and is capable of reading and remembering the next input
token (terminal symbol) which is called the look-ahead token. Depending
on the look-ahead token and the content of the stack., the parser takes one
of the following actions:

1) Shiftt The current look-ahead token is pushed into the stack and the
next token is read in. Also a tuple describing the action is generated. |If
the token being shifted is a special symbol. an igentifier. or a reserved
word, the tuple generated has the form (Shift.n), where n is a number
identifying the token. On the other hand, if the token is an integer or a
real constant, then the tuple generated has the form (Shift-integer.c) or
(Shift-real.r), respectively, where ¢ or r is the value of the constant.

2) Reduce: This action is taken when the parser recognizes that the stack

contains the right hand side of a grammar rule., say ruie n, and that this

rule should be applied at this point. it then pops from the stack the
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tokens forming the right side of rule n and pushes onto the stack the token

on its left side. It also generates a tuple (Reduce.n).

3) Accept This action is taken when the parsing process is successfully
completed. The tuple generated in this case is (Accept.0).

4) Error: It the parser discovers that the program is syntactically incorrect.
it simply gives a warning and halts. Of course. more elaborate error han-
diing actions couid have been taken if our goal was to produce a more
sophisticated parser. For the details and internal forms of LR parsers. we

refer to (2].

The second phase of the interpreter reads the intermediate program
(sequence of tuples) and reproduces the actions taken by the parser on an
action stack. Simultaneously. an adjoint value stack is used to store tem-
porary values needed in the interpretation. In Appendix C. we give the
compiete listing of a C program for the second phase of our SCE solver,
and in the rest of this section we will outline the main features of this

solver/interpreter.

The program uses a location counter “iocation® to indicate the inter-
mediate tuple being interpreted. Starting with location =1, the interpreter
reads the tuple pointed to by "location”, takes a certain action. increases
location by one and then repeats the above cycle. The action taken in
cach cycle depends on the type of the tuple being interpreted:

1) if the tuple is of the type (Shift.n) or (Shift-integer.n), then n is pushed
into the action stack.

2) it the tuple is of the type (Shift-real.r), then r is pushed into the vaiue
stack and a zero i1s pushed into the action stack.

3, if the tuple is of the type (Accept.0). then the interpretation is ter-

minated.
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.‘:.:-,- 4) If the tuple is of the type (Reduce.n), where grammar rule n has the
AoRS
‘ . form b - a, a, --- a, then the interpreter pops the k top locations of >
. X
o the stack, which should contain the symbols &,. --- .a, and pushes b. It
:::-:::- also may execute a semantic routine if any is associated with this grammer j:f:
S o
"-"- rule. These routines manipulate the data on the value stack to refiect the
'“ e
HAA semantics of the grammar rule. X
._’:.‘, -
KA :
Seld At this point we note that we do not actually have to push or pop the
SASd »
A 2
. grammar symbols in the action stack, and that it suffices to keep track of ~
\
‘}-': the top of the stack. Then at the time of a reduction. the grammar ruie
e
N . ;
?;Ew. and the top of the stack determine uniquely the location that each symbol
AN
N
:-. would occupy on the stack. With this, we can transmit information from i
s 4
:.r',: one semantic routine to another by pushing this information into the stack
3t .t
\‘_} o
-:.-‘: in the place of the grammar symbol. For example, the semantic routine
~~\‘:\
SN associated with rule 36 uses the location of the FOR symbol on the stack R
{ u
D 10 store the starting address of the first statement in the FOR loop body. -
R
-I:::: Then. when the execution of the FOR body is terminated. the routine for .
‘::"': rule 35 retrieves this address from the stack to re-initiate the execution of

the FOR body if the final value of the index of the loop is not yet reached.

o

.{C\

.:-_.: In order to reduce the storage required for holding the intermediate
r-".n ;‘
o tupies, the program in Appendix C reads and executes the tuples in four

(i .
P stages: In the first and the second stage. the declaration and the input part -
% -
‘.;.{; of the program are processed. respectively. In the third stage. the system

oo ot equations is soived. and finally in the fourth stage the output is printed.

oC -~
ok we briefiy comment on each stage.

:-.'::;L The declarations: The main objective of this stage is to construct the sym- '
e po! table and to allocate storage for the declared sequences. The symbol

o -
.- table ‘sym_tab{l” 1s an array of records with three fields. The first fieid

Nt .
b Y Bl
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contains a character that indicates the type given to the identifier, namely
P. i or S for parameters. indices or sequences, respectively. The interpre-
tation of the integers in the second and third fields. cailled entryl and
entry2, depends on the type of the identifier. For parameters, entryl con-
tains the value of the parameter and entry2 is immaterial. For index vari-
aples. entryl hoids the value of the index. initialized to zero. and entry2 is

set during the execution of a FOR loop to the final value of the loop index.

Finally, if the identifier is declared as a sequence variabile. then it may
denote a single sequence or an array of sequences. Single sequences are
distinguished Dby setting entry2=-1. with entryl pointing to the location where
the sequence is stored. For arrays of sequences. entry2 holds a pointer to
a bound table that indicates the dimension and the bounds of each array,
and entryl points to the location where the first sequence in the array is
stored. The first three locations in the symbol table are reserved for the
identifiers d. o and u. respectively that are preset to the don’t care. the
zero and the unity sequences. respectively. However, if any of these iden-
tifiers are declared in the program. then the corresponding entry in the
symbol table is overwritten by the semantics routine corresponding to the

new declaration.

The sequences are stored in a two dimensional array seq_store(lll.
€ach row in the array has a length at least equal to MAXT and is used to
store the elements of a sequence. Arrays of sequences are stored in con-
secutive rows such that any index changes slower than the one to its right,
if any. (n order to keep track of don’'t care elements, an array d-tableill]
of bpits 1s used such that for each element in seq_store(l(l. there is a
corresponding bit in d-tapbie(l{l. This bit s set to one, if the element in

seq_store(lll 1s & don't care. and to zero, otherwise. Thus. any part of the
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program that reads an element from seq_store(l(l] has to inspect also the

corresponding entry in d-tabie(l().

The implementation of the SCE soiver listed in Appendix C allows for
full causality in the sense that an output may depend on any previous input.
Accordingly, storage is provided for the retention of at least MAXT elements
from any sequence. A more space-efficient implementation would be to
retain only the last C elements from each sequence in a circular buffer,
where C is given. This allows only for C-order causality in the sense that
the output of a certain cell at any given time t may only depend on the

inputs to that cell during the time period from t-C to t-1.

The input part: The INPUT statement specifies the sequences to be read
from the input file as well as the number MAXT of elements in each
sequence. The interpreter reads. as a stream, the MAXT elements of the
first specified sequence foliowed by those of the second sequence, etc..
provided that the elements are separated by at least one space. No spe-
cial characters are required to separate the elements of the different
sequences, Each element in the input file may be either a floating point
number or the letter "d" representing a don't care element. The interpreter
aiso recognizes the string "---+" in the input file as an indication that the

remaining elements in that sequence are don’t cares.

The equation solver. The sequence of tupies in the body of the program
are executed iteratively MAXT times. A global clock "TIME" is initialized to
1 and incremented at every step of the iteration. At every step. the
expression on the right side of each equation is evaluated at time TIME and
assigned to the corresponding element of the sequence on the left side of

tne egquation.

The value stack is used during the evaluation of sequence expressions

-" " ., ",

.
"'l'

N

K-

-

.
"ty

> W

&t




e

.

c"
L

“4

25
4

!

Y
. L,
. " 'l .A ‘} .I .' .

[

-
-

to store temporary results. For example, the semantic routine associated

with the grammar rule 52 (seq_factor - seq_spec) reads the value of the
element TIME in the specified sequence from seq_store(lll. and pushes it
onto the value stack. The resuit of any subsequent sequence operation is
stored on the stack until rule 37 is executed and the final result is stored
back into seq_storelll).

The sequence operators O. Z, T and E operate on sequence factors
and have the effect of changing the global clock during the evaluation of
the corresponding factor. The ofd clock value is stored in the action stack
for retrieval after the evaluation of the factor is complete (rule 53). If the
result of any operation involving the above operators is the don’t care ele-
ment. then the flag “skip” Is set which causes the execution of the seman-
tic routines to be skippead until the corresponding tuple (Reduce.53) s
encountered. Of course provisions are made to deal with arbitrary degrees

of nesting.

in a similar way. the flag "Mskip" is used to chose the appropriate
operand in the multiplexer operator. Finally, we note that by restricting the
operands of the accumulator operator to sequences instead of sequence
factors. we simplified greatly the action associated with that operator. For
a detailed description of the different semantics routines. we refer to the

compiete listing of the program in Appendix C.

it 1s important to note that the SCE interpreter detects any incon-
sistency in the given equations or any attempt of solving equations which
are not causal or weakly causal. It does so by associating with each
sequence an entry in the array last_computed(]l] to keep track of the last
element that has been computed in the sequence so far. Any attempt to

overwrit¢ an already calculated element or to read an element that has not




yet been calculated is then easily detected and reported as a run time
error. The interpreter aiso detects other types of run-time errors that are

listed in the function run_error in the Appendix.

The output part: After completing the interpretation of the body of the pro-
gram, the sequences specified by the user are printed on the standard out-
put file.

The SCE simulator/soiver was used to simulate the operation of the
systolic networks that have been verified analytically in Chapters 3 and 7.
In the next section. we will illustrate its application by applying it to the
simulation of an LU factorization network that will be used in Chapter 9.
Although this approach to the simulation of systolic networks Is very simple,
it should be clear that it can be used only to verify instances of computa-
tions; that is, all architectural parameters and input data have to be given
specific values during the simuiation. Of course. this observation applies to
any simulator or numeric solver, and the only way to allow for a more
general simulator would be to consider symbolic manipuiation which pro-

duces a symbolic description of the outputs in terms of the inputs.

Finally. we note that a possible optimization of the implementation of
the interpreter could be achieved by replacing the single value stack by Kk
stacks. for some optimal k. This would reduce the total number of itera-
tions through the body of the program by considering at each step the ele-
ments TIME, TIME+1, --+ ., TIME+k of the sequences instead of only one
element at a time. However. if the system contains any recursion, then
only few of these k elements (and in many cases only one) can be con-
siderea at each step, and this requires more complicated book keeping to
upgate the array last_computed(] and the global clock. We decided not to

implement this optimization because we intended the solver to be used in
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cases where analytical solutions of the system of equations are difficult, and

hence where recursivity is usually present.

4.3. Example: An LU factorization network.

In this section the SCE interpreter Is applied to the simulation of the
computations of a network for the LU or the UTDU factorization of a sym-
metric banded matrix A and the soiution of the linear system of equations
Ax=y with a given vector y. It will be shown aiso that, with slight moditica-
tions, the same network can be used to compute the Cholesky decomposi-

tion LLT of the matrix A.

The first systolic network for factoring a banded matrix into the product
of a lower triangular matrix and an upper triangular matrix was suggested
Dy Kung and Leiserson [31]). Later. Brent and Luk (71 modified the Kung
and Leiserson network to compute the Cholesky decomposition of symmetric
matrices. The network described in this section is aiso designed for sym-
metric matrices but is different in its operation principle from the one given
in [7]. Both networks use almost the same number of computational cells
and achieve approximately the same speed-up over seriai execution. They
aiffer however in the type of computational cells and in their interconnec-

hons. .

Consider the system of linear equations
Ax =y 4.1)

where A is an nxn matrix and x and y are n dimensional vectors. The
sostion x of (4.1) may be obtained by finding a fower triangular matrix L
and an upper trianguiar matrix U such that A = L U. and by solving the

wo triangular systems L z =y and U x = z. More specifically, assuming

tat A s symmetric and banded with band width 2k+1, and denoting the
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elements of the matrices A. L and U by g, [ 'i/ and u; ,. respectively. we

may use the following algorithm to compute the LU decomposition of A.

L& |

‘e

Note that only the elements a, . with />/ are used and that only the non

zerc elements of L and U are computed.

ALG2 : LU factorization.

)

FOR i=1. +++ .n DO |

D FOR j=i. ++- . min(n. i+kl DO _
1.1 I“. = aI'/ s

a.

12 o, , = b
.
i.f dl y N
2) FOR q=i+1, - -+ .min(n, i+k} DO .
FOR j=q. -+ .min{n. i+k} DO »
.0 T %q.i " g Vil =

At this point we note that the matrix L obtained by the above algorithm i
satisties L=U'D, where D Is the diagonal matrix defined by d, =/ . Also. =
by replacing steps 1.1 and 1.2 in ALG2 by .
N

a o

-
.
?|
EY

we obtain an algorithm for the Cholesky decomposition LLT of A

“l

After having performed the LU decomposition of A, we may compute the N

i vector z=L-1y by the following algorithm

;;I:;; ALG3 : Back substitution. -

o FOR i=1, --+ .n DO P

re: Y, B
.:'. 2 = e
- - i

o FOR q=i+1. -+ .min(n, i+k} DO
= -1, 2 e
Yo = Yq T q.i di =
s S N e e e e T T AN NN L L N N T
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Finatlly, the soiution of Ux=z may be obtained by an algorithm similar

t0 ALG3. or aiternatively by using ALG3 itself for the solution of U x = Z.

where z, = . X, = Ui i
ere z; i1 % X._j¢1 and U is a banded lower triangular matrix

with the elements Y T Yplivta-in

As an example, let n=5 , k=2 and
2 4 6 0 0 4
4 11 15 -3 0 14
A= |6 15 20 2 -2 and y = |15 4.2
0 -3 2 -19 1 0
0 0 -2 1 14 -6
By ALG2 we obtain
2 0 0 0 0 1 2 3 0 0
4 3 0 0 0 0 1 1 -1 0
L= |6 3 0 0 and U = |0 0 1 -5 2| 4.3)
0 -8 5 3 0 0 0 0 1 -3
0 0 -2 -9 -9 o o o o0 1
and by ALG3
2 -41
2 =19
z =13 and x = 27 4.4)
-3 6
3 3

The graph of the systolic network that executes ALG2 and ALG3 simul-

(k+1)(k +4)
2

nodes. Each node is labeled by a pair (i,j). where i and j are the coordi-

taneously is shown in Figure 4.1. It is composed of interior

nates of the node with respect t0 the two axes shown in the figure. The

color of each edge is determined by its direction. More specifically. edges

directed to the east., south ang south west are given the colors s. b and c.

respectively, and those directed north are assigned the colors r or p

depending on their relative position.

The part of the graph that is formed by nodes (.p. i=1.-- . k+l.

1=1,--+.k-1+2 represents a subnetwork that executes ALG2. It consists oOf

three of nodes whose operation is described by the tollowing equa-

ypes

tions.
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Figure 4.1 - The graph for the LU network £
—
g‘
For node (k+1.1) -
Op 1 =0y [T/ Ppyqq = Yl (4.5 -
where 71 is the unity sequence defined by 7()=1.0 for any t.
For nodes G.1), i=1, --- |k oo
Pio =0 ey =7 46.a
”I,2 = no [Oi,1 x [p’-'] - 'yi,]]] = no O,'] x p/,2 (460) '. “
017 =Ny 9, (4.6.0)
For nodes (.. |=2.- - - .k+1, i=1,- * - k+2-j
91 = o 9 4.7.a)
5 77,,".1_.‘ = no m; ¥ (4.7.b) .
-‘% pi.iﬂ = no P 4.7.0) -
’ Yiglj-1 = N, ['v,'/ t P * o,.'ll 4.7.0)
\.:
P On the other hand. the part of the graph composed of the nodes (Q.j.
‘.-'l -\.
o j=1.---,k+1 corresponds to a subnetwork that executes ALG3. The opera- .
v tions of the cells in this subnetwork are described by .
- -
<
Q_ -
% .
- - '—\.A':"\’;'n. - NS *,
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For node (0.1)
Po2 = Mg Py - Bp 4l 4.8.8)
0.0 = Mo 19,y * oo,y = Boqll = 0 95 * g, “.8.0)

For nodes (O.p. j=2. - -- .k+1
pO,IH = ng pO.i 4.9.a

Bo.j-1 = o By, * 05, * Py ] 4.9.0)

Note that the nodes (/.1), i=0,---.k correspond to subtract/muitiply
ceils, while the nodes (i.j), j=2,---.k+}, i=1,--- k+2-j. are muitiply/add
celis.’ Only the node (k+1.1) is a subtract/divide cell. In other words. the

network is composed of three basic types of simple computationai celis.

For the proper operation of the network. the input sequences 7, ;

j=1.---k+1 and B8 are set to the zero sequence (. and the input

0.k+1
links sk+2-l,i' j=1,-+-.k+1, are connected to the links pk+2—i,i (see fig-
ure), that is
'v” = ¢ f=Y.c 0« k4] “4.10.a
L (4.10.b)

Bo.k+1

ok+2'/'i = "k"'z-i-i j=2,°° k+] 4.10.¢)

The elements of the matrix A and the vector y are fed into the network

through the links r, i=1,++«<k+1 and r respectively. The precise

i 0.1
input specification is given by
P, = ¥t o2 o, =1, ekt @.1.a
Po 1y = ng” e’ 1 4.11.0)

where T(a,.)=n-(k+1-l), T(m=n and

a‘.(t) = a
ni) = yr

t.trk+1-i

th .
in other words. contains the n-q elements of the g off diagonai

akﬂ-q
of A, and n the n elements of the right hand side vector y.
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in order to understand the principle ot operation of the network. we

first note that at iteration step i of algorithm ALG2. the " row of U and

the im column of L are computed from the '.Ih row of A (steps 1.1 and
1.2). However, the elements of the matrix A are continuously modified. In
particular, at the execution of step i, the elements in row i of A had been
modified by subtracting from them different contributions (step 2) during the
steps i~k.---.i-1. In the systolic network of Figure 4.1, the elements of
the unmodified ith row of A arrive at the celis (.1, g=1.---.k+1, on the
r colored links. At the same time, the sum of the contributions from the
previous iterations i-k.---.i=1 arrive at the same cells on the Cc colored
links. The subtraction is then performed and the elements of the
corresponding column and row of L and U are computed and sent out on
the r and p colored links, respectively. These elements propagate upward
in the network allowing the cells (q./). j=2.-+-.k+1. q=1.---k+2=-j toO
compute and sum the contributions for the modification of the subsequent
rows of A. These contributions are sent downward on the ¢ colored links.
The subnetwork formed by the cells (0,), j=1.---.k+1 operates in a similar
way.

A ctoser study of the behavior of the network shows that the significant
eiements of the matrix U are sampled from the links pq']. q=1.---.k, and
the elements of the partial sglution vector z from the link b0.0' These
results are sufficient for the computation of the solution x=U-]z. However.
the elements of the diagonal matrix D. where L=UTD. are also available on

the link s More precisely, the output sequences are expected to have

k.1
the following description.

n = nkf2-q 62 7} g=1.--.k (4.12.8
a1 e 2 9

.600 = N e ¢ 4.12.)
Ok 1 T N 62 A “4.12.¢)
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where T(uq)=n-(k+1-q). T)=T(M=n and

L) = Ut tikt1-q
Alt) = dt,f
() = z,

After the computation of U and z terminates, we may use the network
for a second time to solve Ux=z and obtain the vector x. Of course only
few cells will be doing useful work during this second run. At this point
we note that we can add to the network any number of columns of cells
identical to the column (0./). j=1,---.k+1. This enables us to use the
network to soive (4.1) for more than one right hand side vector y simui-

taneousiy.

Finally, we note that the network described in this section can be
modified to perform the Cholesky decomposition LL’ instead of the U’ DU
decompasition. For this, the equation (4.5) for the operation of node
(k+1.1) has to be replaced by

1

=N [———.—.—-
O VPrs11 - ka1

o |

k.1

and the data on the links p’. 2 i=1,-+ -,k have to be set equal to the data

on 7, ,. i=1,-++.k. This has the effect of modifying (4.7.d) to

- 2
Yisrj-1 S Y byt m ot o0 )

It is clear that in this case, the links 7 ;i j=2,- k., i=1,--« k+2-j carry

redundant information and hence can be removed from the network.

After this description of the network. we turn our attention to the task
of simulating its operation. First of aill. we write an SCE program that
describes the network and contains the equations that model its nodes. iIn

the following program, the parumeter k which determines the size of the

network is set to 2.




»
.
A

“~

“

The SCE program for the network of figure 4.1

PAR k=2 ;

INDEX i.j :

SEQN s(0:k,1:k+1) .,
r{O:k+1,1:k+2) .,
p(1:k,1:k+2) .
c1:k+1,1:k+1)
0{0:0.0:k+1)

INPUT( MAXT 18, For i=0.k+1 r(i.1} ) : /* input statement */
FOR j=1.k+1 DO c(1.j) = o END : /* equation (4.10.a) */
D(0.k+1) = o : /* equation (4.10.b) =/
s(k.1} = Z [ u / [r(k+1,1} - c(k+1, 1} 1 /* equation (4.5 */
FOR i=1.k DO

ri.2) = Z [ r@i.1) - cti.1l} 1 ; /* equation (4.6.a) =/

pli.2) = Z sfi,1} * r(i.2) : /* equation (4.6.0) */

s{i-1.1)= Z sii,1) /* equation (4.6.c) */
END ;

FOR j=2.k+1 DO
FOR i=1.k+2-] DO

s(i-1.j) = Z s{ij} . /* equation (4.7.a) */
pli.j+1} = Z pli.j) . /* equation (4.7.b) */
ri.j+1) = Z o(i§} /* equation (4.7.c) */
Cli+)j=1) = Z [ cli.j) + rli.j} * sGi.j) ) /* equation (4.7.d) =/
END ;
s(k+2-j.j} = plk+2-j.j) /* equation (4.10.c) */
END ;
ri0.2) = Z { r(0.1) - b{0.1) ] : /* equation (4.8.a) */
b(0.0} = r(0.2} * Z s(0.1) ; /* equation (4.8.b) */

FOR j=2.k+1 DO
r{0.j+1}) = Z r{0.j) . /* equation 4.9.a) */

0{0.j-1) = Z(2) [ b(0.j} + s(0.j} * r(0.j} } /* equation 4.9.b) */
END
OUT( b(0.0) . FOR i=1.k pli.2) . sik,1) ) : /* output statement */

Next, we will use the above program to simulate the computation of the
matrices L, U and the vector z for the matrix A given in (4.2). In order to
specify the input for this computation, we note that The INPUT statement in
the above program limits the length of the sequences to 18 elements. it
also determines the order in which the input sequences are read from the

input file. namely Poy Py P2 3 and then P3¢ Accordingly. we foliow
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the pattern specified by (4.11.a/b). and use the data from (4.1), t0 construct

the foliowing input file

Input file:

0.0 00 00 40 d g 140 d d 150 d d 00 d d -6.0
d d 6.0 d g -30 d ¢ -20 d d

d 40 d d 150 d a 20 d d 1.0

2.0 d d 1.0 d d 200 d d -19.0 d d 140 ..

Finally. we use the SCE interpreter to run the above program with the

given input. This produces the following output file

xxxx QUTPUT SEQUENCES =*»=x=x
0.00 0.00 0.00 0.00 2.00 d d 2.00 d d 3.00 d d -3.00
d a 3.00 d

XXARAXXAXRRARXEAXRXRXKKE X XX

0.00 a d 3.00 d d -1.00 d d 2.00 d d d d
d d d d

EXXARXRAAXNARRXRXKRRXRRARRKXXKXR

0.00 d 200 d d 1.00 d d -5.00 d d -3.00 d d
d d d d

AAKXAXXREKRXXARRRARARK KX XX

0.00 0.50 d a 033 d d -1.00 d d 033 d da -om
d d d d

AXXXAXRXAXXAXRRXXXKRRXX KX

where as specified by the OUT statement, the sequences are printed in the

order By 4 Ty o m,, and then o it is easy to verify that this output

k.Y
agrees with the resuits in (4.3) and (4.4), and the formuias (4.12.a/b/¢).

Finally. we note that the potential application of the SCE language
presented in this chapter is not limited to the solver/simulator. For exam-
ple. the SCE language may be used for the precise specification of any
systoliC network that can Dbe described in terms of the abstract model. In
tact, for a given network, one may write an SCE program in which the
causal equations and the sequence declarations describe completely the
graph of the network as well as the operation of each of its celis. This
SCE specification may be used. for instance. as an input to an automatic
lay-out program or to a transtator that generates specifications in some

ranguage used in the computer aided design of VLSI devices.
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The syntax directed approach wused in the impiementation of the
Solver/simulator led to a very modular program. This simplifies the task of
modifying the solver to incorporate new SCE grammar rules that need to be
added when new tybes of sequence operators are introduced. Actually, the
agaition of a new sequence operator to the grammar requires only the

implementation of a corresponding semantics routine that describes the

effect of the operator.
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5.

ON THE FLEXIBILITY AND POWER OF THE ABSTRACT MODEL.

After having presented the basic features and immediate applications of
the abstract model. we explore in this chapter some issues that demonstrate
the flexibility and the power of this model. In particular, we discuss two
- restrictions that were imposed on the model. namely the absence of internal
states (memories) associated with the nodes of the graph, and the require-
ment that the graph does not contain direct loops. |In Sections 5.1 and
5.3, we show that, despite these restrictions. it is nevertheless possible to

apply the model to computational cells with internal memory and to networks

o
. with direct feed back connections.
Po
:::I' The application of the model to the issue of the uniform treatment of
data and controi signals is discussed in Section 5.2. In Section 5.4, we
E suggest a technique that simplifies, to a great extent, the verification of
'r_:'_ pipeline¢ computations in systolic networks. Finally, we show in Section 5.5
. that the abstract model may be applied to self-timed systolic networks. For
-..;.-. C’ this. we modify the interpretation given in Section 2.3 to allow for the model
Tn?
_::;j:: 10 be applicable to any systolic network, irrespective of the method used for
~C RS
f_::._:: h the synchronization of its operation.
@
:Z:; ~ 5.1. Modeling computational cells with internal memory.
o The abstract model. as defined in Section 2.2, does not explicitly allow
- the nodes to have internal states or memory. in fact, the specification
given in Section 2.6 for the 1-D convolution network was not consistent with
tne abstract model, since in equation (2.8), we assumed that each celi in
Y] tne network can store a specified real number W,
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However. we note that the definition of causal operators aliows any out-
put to depend on any previous input. thus eliminating the need for explicitly

associating memory with interior nodes. In order to illustrate this idea. we

consider the cell shown in Figure S5.1(@) and assume that the equation

describing the output on the link sl. is

+1

0,4y = 0 1o, + (€} p] * m 6.1

The tactor E p, in (5.1) indicates that the output o, ,®). at any time t.

sk+1<t<(s+1)k, for some s20. will depend on the data item that was exist-

ing on the input link i at the time t=sk+t+l. Clearly. any physical realiza-

tion of this cell needs to contain a memory (see for e.g. Figure 5.1(b).

f; ffc r-/l c

f”en:,*,

A O

L =1
a;r' o-‘
-~ U
(a) (D)
Figure 5.1 - A multiply/add cefl with internali memory
f;( rk - f< f{ . - — - f‘ — __ﬁr"
> — r)bf‘/t
2 of AN It ,oo
Pevy _ _ _ _ M ,i t‘i___'o-___)_._ ) ———7
< - = - Doz N == - - <4‘ N

Figure 5.2 - A 1-D convolution network with writable in-cell memory

Wwith this we can now give a consistent specification of the 1-D convo-
iution network. We add to the network of Figure 2.7 the new links r.

1=0,--- .k that wili be used to input the values of the convolution constants
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| "
%
:__‘;, T Wo.oo W, into the cells. The graph of the modified network is shown in
\. .
) . Figure 5.2 and its operation is specified by the causal equations:
My =am i=1,++ .k (5.2.a)
Pioy =N p i=1,-¢+.k (5.2.0)
e _ n i =
oi"‘] - n [al + [kﬂ_]Pll * ",] l"],"'.k (52C)

IRy With this specification, the network 1/0 description may be obtained in

. the form

k 2j-1
%n =8 ot L o7 uEs .y et W] 5.3

‘5‘."1 "-

The constants Woiose W, are supplied to the network through the input

link rk. The idea is to let these constants flow on the r colored links and

| SRR

let each cell i capture its corresponding constant as it arrives at its own

input link rie The cell then remenbers its constant for the duration of the

B computation, namely for 2n time units. Formally. the inputs to the network
are described by
- o, = ¥ 1e
M nk =8¢
‘_-_ Py = e w
-~ where . is the zero sequence., T(£)=n, T(w)=k and e(t)=xr. w(t)=wr. Using
<
o this input in (5.3) and applying Properties P10 and P4 in Appendix A we
= obtain
‘ 2k -1 Lol g
- = =
% Opey = 0 & ( + N6 )_: n Ep_jyy @ * &
v i=1
-
] This leads to the same formula as in Chapter 3. namely equation (3.2).
v However, we note that the convolution constants. in the modified net-
work, are supplied as an input rather than being associated with the cells.
L
This allows for the possible pipelining of different computations, with difterent
o
Fdu
e et e el e T LN Y
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convolution constants. on the same network. We will discuss pipelined

operations in some detail in Section 5.4.

Finally., we note that although the k cells in the above network are
identical. the operation of each cell i is determined by a local control
parameter that determines the instants at which the memory within the cell
is overwritten. In the next section., we discuss possible methods for con-
trolling the operation of computational celis that depend in their operation

on local parameters.

5.2. Controlling the operation of systolic cells.

As mentioned in Section 2.4, the operators Ar,k,s' M:']"”'w" and Elr‘
can be used to model systolic cells that contain accumulators. multipiexers
or periodic memories. Here the indices r, k. s and wl.-+-.wn control
different timings that may affect the operation of the cell. as for instance,
the reset times. the idle times and the active times of the ceil. One way
of monitoring these different timings in physical cells is by providing each
cell with a separate circuit that generates reset and idle signals at the
specified times. This circuit may be designed either for a specific value of

the control parameter, or for flexibie assignments of the values of these

parameters according to a desired application.

On the other hand. timings may be monitored by signals external to the
cell. This externat control method treats data and control signals in a uni-
form manner [27]. and is especially preferred in systolic networks if the
uming signais can be propagated systolically within the network.

As an example, we consider again the modified 1-D convolution network
discussed i the last section. Equation (5.2.c) specified that the memory

witin any cell /., 1<r <k, s overwritten at times k+/-1+2sn. $=0.1,-++. In

order t0 apply the external control method. we add to each cell i in the

k[

;-'.:'v‘.
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network an input link ¢ such that at any time t. the memory is overwritten
only if the gata item on ¢, equals 7,0=1. It 'y‘.(t)=0, then the content of

the memory is not changed.

In this example. the control parameter k+i-1+2sn. s=0,1:--+, is linear
with /. Hence. we may control the operation of all the cells by means of
a single control signal that is propagated in the network. In Figure 5.3. we
augment the network of Figure 5.2 by the ¢ colored links and add to its

specification the causal equations

‘yi"’] =N ')', I=]."',k

. - - v v » - O . . - - . . . - - - 3 L] - - - - . - - . - -

Figure 5.3 - A 1-D convolution network cantrolied by externat signais.

If the signal transmitted on the input link c, is specified by

vy = o* 72" ew

where a(l)=1 and a(t)=0 for 1<t<T(a)=n. then it is easily shown that the

control signal on the input link ¢; of any cell i is described by

Lo} if t<k+i-1
'v,.(!) =¢ 1 It t=k+i-1+2sn, s=0,1,+ -+
0 otherwise

This shows that the control signal will arrive at each cell at the appropriate
time.

The external control approach is equivalent with a redefinition of our

operators under which the control indices r.k and s are replaced by an
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Sy :
'-:: _ additional control argument. For example., the expression E’r‘ ¢° used in T
-“-\
:‘-"' modeling a periodic memory cell may be replaced by E(.y). where the E
B nonperiodic expansion operator £ is defined by A
" (E (€. 91¢-1) it ¥y)=0 A
N [E. @) = { o
b £ it y@)=1
; =)
. s and the sequence vy controls the resetting of the memory element; that is ~j'.j
= 1 t=r. r+k, r+2k,- .- .
vy = {
R 0 otherwise N
_\ Evidently., the properties of the operator E may be derived directly from
."'\ -.'\'
:.‘_’.'°_~ those of E'r‘ . Similar operators may be defined for nonperiodic accumulators '
Nty
e and multiplexers.
, P =
5.3. Modeling networks with direct feed back loops. ~
The condition described by equations (2.3) in Section 2.2 does not
L allow for direct loops in  the graph of systolic networks. In practice. how- ':_
&5
s ever, systolic networks that have two phase cilocks (for stability considera-
<
N tions) may contain computational celis with direct feed-back connections. In E
x‘i
o
' this section, we show that we may still apply our model to describe the =
-f.-d _:.'
'.'-::Z operation of these cells. The iteration operator of Section 2.4 will be use’
[ -
~::'_:f for this purpose. g
-:\: C e
9 Consider. for example. the cell shown in Figure 5.4. If we were -
.‘.‘: ..‘.
-‘;;: allowed to use direct feed back in the network’s graphs, we could model
N
LR
"y the operation of this cell by the equations o
.l ) -
O ao = A.|(B,.,al.) (5.4.a) -
-'-. = ..\
N B, = AyB.a) (5.4.b) o
s with the condition that a=a,. and that A, and A, are given causal opera-
.; tor. -
7
ol T
T~ )
@ -2




C
Note that the link a, cannot be an external input to the cell, and that

‘ the tink a, cannot be an external output to the cell. Hence. in order to

model the operation of the cell. it suffices to relate the output 8, to the
":.'f input B, This relation is obtained by substituting @, = a in (543 and
F using Theorem 3.2 to solve the resulting equation. This gives
>
s = A8, . I_A »

By = DpB; . 1,08y

7 This completely describes the 1/0 behavior of the cell.

[ e |
A [
< ) N “I
-~ z ] + :
'. b' A¢ l ,
.. q‘ a 1 1]
: [ | | |
i i )
. ]
i Figure 54 - A cell Figure 5.5 - The internal
¢ With direct feed-back structure of a periodic accumulator.
e
As a specific example. we consider the cell whose internal structure is
shown in Figure 5.5 and whose operation is described by
= m o= M:'k_](c ) (5.5.@
'T::‘;' g ¢ = no (e + m (5.5.0)
-
IS
t;\f- R where ( is the zero sequence. If the output link z is directly connected to
L ot
';'1-‘4 the input link s, then the output sequence { may be described as a func-
r_’_.-._
Es:,'-. tion of the input sequence ¢ only. We obtain this description by first sub-
E-:j:" stituting o ={ in (5.5.a) and using the result in (5.%.b).
\ 0‘ l.'
L @7 22 1.k-1
= - .
::_.,; { = no (£ + M, (¢t . § 5.6)
b -
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We may then apply Theorem 3.2 10 express the solution of (5.6) in the
form

C=1p o0y My e 6.7

This is an explicit I/0 description of the cell. It is easy to show that the
formuia (5.7) is equivalent with

A'I.k,'l(

{ =0 £ (5.8

0
that is the cell of Figure 5.5 acts as a periodic accumulator. A similar
resuit was proved by Johnsson and Cohen [27] using the delay operator
defined in [11). In order to prove the equivalence of (5.7) and (5.8), we
consider the ¢h element of {. By (5.7) we have
¢ =t a6+ MIFTT G mne
7 0 1

=0, (€ + M}"‘"u . ONw

which by the definition of the muitiplexer operator gives

0 t=1
) =< E@-1) t=2.k+2.2k+2.° - (5.9)
E-1 + (@-1 otherwise

Equation (5.9) is a recursive formula that may be rewritten in the form

0 t=1
(@) = (5.10)
na -1
T &G +/) + L@ +i) t>1
/=0 r r

where tr=(t-1)—mod((t-2)+k) and na=t-t_. Finally. from the definition of the
accumulator operator (see Section 2.4), it follows that the elements of tne

sequence { Iin (5.8) are also give by (5.10), which proves that (5.7) and

(5.8) are equivalent.
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5.4. \Verification of Pipelined Operation.

in this section. we apply the abstract model to the verification of pipe-
lined operations in systolic networks. More specifically, given a systolic net-
work that has been shown to perform a certain computation successfully, we
want to study the issue of repeating the same computation on different data
in a pipelined fashion. Assume that a certain systolic network NET has the

I/0 description

n; = I'i(é..."‘,in) i=1,+--.p 5.1

where EI.. j=1.+-.n, M;. i=1..+-.p, are the input and output sequences of
the network, respectively. and I, /=1.---.p denote certain causal operators
that model the behavior of the network. Suppose also that for a certain
input description

£ = ! @, j=1.+-+.n (5.12)

with given integers r/ and sequences a. we were able to show that the

outputs are described by

n, = ! 8, i1=1,+.p (5.13)
with specified integers si and sequences B’.. in other words, suppose that
when (5.12) is used In the equations (5.11), then we were able to prove
that

n’ 8, = rl.(n” @, oo 0" @) i=V,e+-.p (5.14)

The calculation of the elements of B,, i=1,-++.p. from those of a;.
j=1.-++.n using the network NET shall be called the computation "C*. The
time of this computation is defined as the time required by NET to com-

plete C from the moment when the first non-8 input entered NET to the

moment when the last non~6 output was produced. More precisely.
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- Time (C) = max( T(ns.l /3,): 1€i<p} - min( rj; 1<j<n} (5.18

‘ where, as usual, T is the termination function defined in Section 2.1. ,

-.:} Often. it is desirable to repeat the computation C. say m times, with

different data sets A°=[a?:/='l,-’-n). e=1,-++-.m. Let us denote these m

instances of C by c®. e=1.---.m. In many networks, this may be accom- ¢

_: plished by pipelining C], R Cm. The time difference between the initia— :
.“:' tions of two successive instances C° and C®'' will pe defined as the pipe :
" separation T of the computation C. In this case. the inputs for the dif- |
::EZ ferent instances of C should be pipelined on the input links. That is
equation (5.12) for the input sequences should be replaced by )
_: g =a Pos.m@) j=1.++-.n 5.16) 1
where we used the asterix in 27 to indicate that the sequences represent :
w- the input data during the pipeline-operation. We will also use é? to
represent the inputs (5.12) for a specific instance c® of the computation. S
This * and e superscript notations will be empioyed from now on for
'\ sequences on any communication link.

; Iif the computation can be successfully pipelined on NET with a separa- :
tion 7. then by using the inputs (5.16) in the network I/0 description (5.11),
'-:.\ we should be able to prove that the output sequences during the pipeline-
il operation are described by

2, = na* P m D i=1.--.p (5.17)
. In order to ensure a successful pipeline-operation, the pipe separation -

T must be large enough so that the inputs of the different instances c® do
not overlap and the corresponding outputs do not overwrite each other.
The first condition implies that T)T(a?), j=1.+++.n. and the second that )

1>T(8,.e), i=1,-++.,p. In other words, the minimum pipe separation Tm(C)
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":' - for the computation C is equal to the maximum span of all the input and

{ . output sequences in C. where the span of a sequence is defined as the

ﬁ_: - time difference between the first and the last significant elements (non-8 or

non zero elements) in the sequence plus 1, that Is the time during which

. o the sequence carries information relevant to the computation. Hence. a

g o network that can be used to pipeline a computation C with a pipe separa-

; - tion ‘rm(C) achieves maximum efficiency. from the viewpoint of the pipelined

= operation.

; In order to derive (5.17) from (5.16) and (5.11) without repeating the

: h; effort spent in proving (5.14), we use the negative shift operator and the

. ., equation (5.12) to rewrite the pipelined input (5.16) as

= e: = af Pl vm @ &) [=1.c+-.n (5.18)

| Here 57 are the inputs that would be used if the instance C® of C had

' . been performed on NET without any pipelining. Next, we substitute (5.18)

into the network I/0 description (5.11) and obtain for i=1,:+.,p 1
SEEN :
- . m, = Pl @ e ™ BT @S (5.19) :
N !
::l The remainder of the proof is based on the use of the different pro- y
-' " perties in Appendix A for factoring the shift and the piping operators out of

the causal operator T, If the computation can be successfully pipelined

PR VI sur e )

. ._': through NET, then we should be abile to transform (5.19) into the form
S oSS pT =si e .. ,0 21 ...

M n, =T P m T Ty &) ) i=1,+++.p (5.20
i

which by (5.1 and (5.13) directly reduces to (5.17).

It should be noted, however, that there exist computations for which
there is no 7-value for which (5.20) is derivable from (5.19). This means
that such computations cannot be pipelined. On the other hand. we can

jh'- identify a class of computations for which pipelining is always possible. The
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term ‘inert® shall be used to identify computations in this class. More
specifically. a computation C on a systolic network NET is called inert if

1D At its initiation, C does not care about the data on the non Input

communication links of NET. that is we may assume that at time t=1,

the data in any non input sequence are O8's. This implies that any
delay in NET should be modeled using the shift operator and not the
zero shift operator.

2) Only O-regular operators are used for modeling the cells in NET.

This implies that the network does not treat 8 as a special symbol.

it is always possible to pipeline an inert computation C through the
corresponding network NET. In fact we may simply chose the pipe separa-
tion 7 to be the time of the computation defined by (5.15). With this value
of 7. C“"l does not start before C® is terminated. Of course. we are not
interested in such large values of 7. and hence. the problem arises of
finding the least value of 7 for which (5.20) is derivabie from (5.19).

As should be clear from the above discussion, the ability to derive
(5.20) from (5.19) is the major issue in verifying the pipeline operation of
any systolic network. and this ability depends principally on the value of 7.
However, for any inert computation C, we know that there exist a value for
which (5.20) is derivable from (5.19). In order to find the least possibie 7.
we start with 7 = Tm(C) and proceed to factor out the shift and piping
operators from (5.19) untii we either reach (5.20)., which is our goal. or we
cannot continue the factorization because of a smail value of T. In the

latter case, we increase T appropriately and repeat the derivation procedure.

EXAMPLE:

As an example. we consider once more. the modified 1-D convolution

network of Section §.1. recall that the network (/0 description was given by

v,




470
4,08

K
K 2j-1
Oep =0 0y + T 07 e oyt m (5.21)

2k=2j+ k

1=

and that. when the inputs for a certain instant of .'e computation C® are

specified by
of = e (5.22.)
n: = o ¢° (5.22.)
p: = 0 we (5.22.¢)

then the output is described by

e _ ~2k=1 e
Oy = A1 e 5.23)

The detailed forms of the sequences t°. ¢% and w®. containing the input

data for C®. and the sequence 1;9 containing the resuit of c?®. were speci-

fied earlier.

it is easy to see that this convoiution computation is inert. Hence. it is
always possible to pipeline different instances of the computation on the
same network. In this case. the minimum pipe separation during the pipe-
lined operation is Tm = max(2n, 2k, 2n-2k-1)} = 2n. f m instances are
pipelined through the network with the minimum separation, then the inputs

should have the forms

* - - - -

oy = n* ! Pﬁ’Lm(et") = o7 Pﬁ’;]m(n k=1 % (5.24.2)
= _ 2n e, _ o2n C)

T = Paz1m®©8) = Posymmy (5.24.b)
* - 2n e - 2” e

Py = Pozym®w) = Pl m®y (5.24.0)

Using the pipelined input (5.24) in the network 1/0 description (5.21), we

obtain the output of the pipelined operation, namely

k .
- _ ~2k=1 2n ~kk-1) e 2j-1
Oper = 0 Pe=1.m® ay +’§1 n
n an e an e
HEgk-2i+1 Pez1.m P " Poz1.m ™)

PO - . - . CHR

&L e Pl PRURRN o 8T, e P T FAES

. . P Y B LR BSR4 . Lt o e

......... et
R S

N

.
PR Y O Y. te v - -
S VS P VR R ES TR IY M R EESY .. F'.)

>




Next. we use the Properties P16 and P1.1 in Appendix A to rewrite this as

X
ol - ~2k-1 _2n -(k-1) e 2/-1
% =0 Feuym@ T oy ¢ L0

M n [?n ] ]

o Poti.m E2k-2141 @R * TP (5.29)

n @
Using the fact that T“:22k-21+1(pk) * n € 2n. and applying Property

P8.3. we may reduce (5.25 to

P
= 2k-1 _2n -@k-1 , k.o 2/-1 _2n o o :
gy = 027 P2 @ whol + E n (Eap /41 @D = 7D :
Finally, from (5.21) and (5.23) we obtain ‘]
= _2k=1 g2n -2k-1 _e '
O41 = 01 Po=1.m @ I +1)

_ ~2k=1 n e
=0 P§='l.m(e L

This proves that the output of the m Iinstances will appear on the output

v", 0'.
Pk k

link s at a rate equal to the input data rate, namely the output of one

k+1

instance every 2n time units. :"
Note that the technique suggested In this section separates the verifica- .
tion of the pipelined operation from the verification of the correct execution J
of one instance of the computation. This separation leads to a clearer =
logic and simpler proofs. B
5.5. Self timed systolic networks. >
So far., we have applied the abstract model to clocked systolic net- "‘

works, that is, systolic networks that are synchronized by a giobal ciock. In
this section. we show that, with a slight modification, the model may be _’
applied to self timed systems as well [50]. In order to explain the differ— _
ence between the two types of systems, we first generalize the definition of
systolic networks to include any network in which computational cells have a -
=1

basic cycle that is repeated indefinitely. uniess the cell is forced to hait

externally. After the initiation of a cycle in a computationai ceil. the cell e
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:.\"5 ot reads its input from the input links, performs a specific computation and
"\' ! then produces its results on the output links. Here, we will assume that a
:3: ) cycle terminates with the initiation of the next cycle.

S:; S In clocked systolic networks, the cycle of all the cells are Initiated
A i simultaneously by an external giobal signal (a clock) that is broadcasted to
. ‘: every cell. The duration of the successive cycles is the same and is often
.', L called "one time unit". We repeatedly used this terminology in our discus-
S sion.

f.:-: "_Z:S On the other hand. the initiation of the cycles in self timed systolic
{ ‘. networks is not synchronized. and each cell determines locally the Instant at
::1 W which its cycles should start. Many protocols may be applied to organize
.: -, seif timed systems. Here. we consider an organization that is directly sug-
}:‘:: E"f: gested by our abstract model.

::-': E Assume that the initiation of the first cycle is synchronized by a reset
.\;\ signal in all the cells in the self timed network. and that a new cycle In
any particular cell is initiated at the instant when the cell produces the last
~:':' « output of its current cycle. Assume also that each communication link in
.'_:._ f the network is augmented by a pair of Request/Acknowiedgment lines,
“ ~;. denoted here by REQ and ACK. respectively. These lines are used to
\_\ impiement a 2-cycle. non-return to zero shake-hand protocol ([50] between
::;A - the sender S and the receiver R of the data on any communication link.
;, ] REQ and ACK may carry a single bit (0 or 1) from S to R and from R to
- ;s S. respectively.

e The protocol is breifly expiained as follows: S does not send data on
the communication link uniess REQ and ACK are in the same state (both 0

or both 1). After sending the data, S changes the state of REQ signaling

that the link contains valid data. When R senses that REQ and ACK are in
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o 4
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: o
- o0
t: gifferent states. it reads the data and changes the state of ACK indicating o
:‘_:: that it received the data and that it is ready t0 receive new data. More %
! descriptively, after the first cycie is initiated, each cell executes the foliow= "
’E ing algorithm indefinitely (unless externally forced to halb: i
12 )
N ALG4 -
1 Wait until the REQ and ACK lines associated with each input link -

are in opposite states. >

2) Read the input data and change the state of the corresponding =

ACK lines. :;Z:

3) Perform the computation on the input data ;

4) Wait untit the REQ and ACK lines associated with each output link ‘.

are in the same state. .

5) Put the results on the output links and change the state of the '.::.:

corresponding REQ lines. .

6) Initiate a new cycle by going to step 1. E

Note that any REQ/ACK pair of lines assoclated with a network input link is :

initially set such that REQ and ACK are in the same state. This indicates )

won

that the link is ready to accept external input. On the other hand. the ’—;

REQ and ACK lines associated with any other link in the network are ini- o

tially set to opposite states to indicate that a certain data item is initially <

present on the communication link (this item may be 0).
with this general definition of a cyclte in a systolic network, we gen-

eralize the physical interpretation of part [A3) of the abstract model (see __

Section 2.2) to allow for its application to systolic networks irrespective of .
the method used for the synchronization of their operation. More specifi- '.:.
cally, if x_is an OUT edge of a node v in the graph of the network. then

the sequence £V associated with X, is interpreted as follows:

R .
‘e . -f..-' e ;' Tet .’L.'--.".-. "--'~; ""'.--"'\:'.‘\;"L.-'-':%-;-:' .;' ;':4\1"1 .-;_.p*.p..'( J - \.f l A.‘ .l‘"'h. P I AN PRV Aa o sas P




1 It node u is a source node. that is. if x, Is a network input link,

then £, Is the " dawa item that is externally transmitted on x, from
the input source.
2 It node u is an interior node, then ev(l) is the data item that

appears on x  at the beginning of the operation of the network. and for

v

any t>1, ev(t) is the data item that is placed on x, by the computa-

tional cell u as the result of its ¢-D% cycle.

With this general interpretation of data sequences. a systolic network
has to satisfy some constraints in order to ensure that the causal equations

i _ a0 m _
& = I‘u(nu. --,nu) i=1,*++.n (5.26)

associated with an interior node u indeed model the computation of the
corresponding cell. Here, yzyum and x],o--,x". are the IN and OUT
edges of u. respectively. These constraints are:
Cl : The computational cell corresponding to any Interior node u will
not be blocked and wiil continue its execution for infinitely many
cycles (uniess externally forced to halt).
C2 : For any j, 1<j<m and t. t?1, the communication pattern in the
network will ensure that nL(t) Is the data read in by the cell v from
the link y/ th

u during its ¢t cycle.

If constraints C1 and C2 are satisfied in a systolic network. then the model
of Section 2.2 may be applied to the specification and verification of the

network.

For clocked systolic networks. C1 is automatically satisfied as each

cycle is initiated by a global clock that is supposed to run continuously. In

order to satisfy the second constraint C2, we may assume the following: 1)

No cell places the resuit of the lm cycle of its computation on the output

links before the end of the cycle. 2) the duration of each cycle is taken to

- . . . - . . . » T - . - T PR I TR B ." -.. ~ .ot -‘. -. . -‘. - ." '.h a™ ...
YN ". ." .'. \. “~ -~. ) ~. -' n. .'. ..' ..' --. . .- ey "o * . c o ‘e .-. Y .!. ~ N .- ° . ) N
A AR AP IP A R C I R I GO B ST il Wil S0 Sl Wl Wl Sl TGS Ss 3 Y
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be at least equal to the time required by the slowest cell in the network to
complete its computation, and 3) the actual reading of the data by any cell
does not start less than a certain time A after the initiation of a cycle,
where A is the time-span necessary for the signals on the communication
links to stabilize. These assumptions are usually implicitty made when

clocked systolic networks are discussed.

For self timed systolic networks. a shake hand protocol should be used
in order to ensure that the constraints C1 and C2 are satisfied. This pro-
tocol should aiso be obeyed in ali external interactions (inputs and outputs)
with the network. For example. if the protocol defined by ALG4 is used to
synchronize the operation of the cells. then all inputs and outputs to the
network must satisfy the following rules:

1) A data item is not transmitted on a network input link uniess the associ-
ated REQ and ACK lines are in the same states. The state of REQ shouid
be changed after the data is placed on the link.

2) For any input link x,

in all the elements in the infinite sequence Eln‘

including don’'t cares. are transmitted on X,,- However. a 0 item may be
transmitted by simply changing the state of ACK without placing any signifi-
cant data on the data lines of x, .
3) For any network output link X, every output item must be collected.
even if there Is no interest in its value. In this case. the collection of the
data is simply achieved by changing the state of the ACK line associated

with xo.

It is clear that the protocol described In this section ensures that dur-
ing its tm cycle, any cell u will read the tm elements appearing on its
input links y:yZ' provided that these elements are, at some point of

time, transmitted on the corresponding links. Note that the only reasons
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that may prevent the 'th element "{;“) from ever being transmitted on y‘ll
are 1) y’ is a network input link that is not supplied with data items. or 2)

7]

yf' is an QUT edge of an interior node v. and the execution of the cell v

was blocked before the completion of its - cycle. It we ailways supply
the inputs when required. it is clear that the network will satisfy the con-

straint C2 if only the first constraint, C1, is satisfled.

In the literature of distributed processing. the constraint C1 is usually
called the ‘liveness property" and may be formally verified with the help of
the so called temporal logic (37]. This formal verification is beyond the
scope of this dissertation. However, we lllustrate here the steps of a for-
mal proof by the following informal argument. Assume that any cell in the
network does eventually complete its (t-'l)th cycle for any t>1. This implies
that for any communication link X, in the network, eu(t) will eventually be
transmitted on X, in other words. the inputs of the tm cycie of any cell
in the network will eventually appear on the input links of that cell, and
hence. each cell will eventually read its appropriate inputs and thereby free
its input links. This, together with the fact that the outputs of the network
will eventually be read. leads to the conclusion that any link in the network
will eventually be ready to receive its ¢+ element. Hence. each cell in

th

the network will be able to output the results of its t cycle. which means

that every cell in the network will eventually complete its t"7 cycie. Adding
to this a demonstration that every cell will eventually complete its first cycle,
we may show that each cell in the network will execute infinitely many

cycles. thus satisfying the constraint C1.
Finally, we note that, in the organization for self timed systems dis-
cussed here, the role of the don’'t care elements is very crucial. More

specifically, 0 is interpreted as a data item rather than a ’nothing’. tn

o .
A - e A o ——— -
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other organizations of selt timed systems. the operation of each cell does
not start before the cell receives significant input data ( non-8 items).

Systems of this type may result in a dead-lock situation, thus violating the

constraint C1. Clearly, the organization and verification of self timed sys-

l.‘
'o

tems is stil a wide open area for research.

.\-.
>

LAY
. 2
l’f'.

a s 8

s’ 2

P -

o 3

<

o

PR -
a0 ;|
.t -
. n w7,
e o

i

* .

[

-_‘-t. T
fa .-. 'u‘
C AT -
.r._:\

o e

ﬁ..\ o _‘u

A b
)

o ol |

(]

'-."l
R -
LI
I.. - .
e . -

., %
-0. c.
PR

..'k_.




R~ . Sl el e L Ve (LN L w S i muil M =i Nite Yty St Tdad B kA N AN I I R IR AL L Podit

101

..“_-‘ 6. INTRODUCTION TO FINITE ELEMENT ANALYSIS.

:\" " Finite element analysis is a technique widely used by engineers [57.42]

o ‘; and applied mathematicians {46.51] for solving boundary value problems for

" f-. partial differential equations. In the linear case. a majority of these boun-

\f: w, dary vaiue problems can be formulated as a variational problem of the fol-
R lowing form:

e

\j}: - Given two Hilbert spaces e’(; and g”; an appropriate bilinear opera-

' ‘ tor e%and a corresponding linear functional Q on % find the

: function pe%such that

o, v

TN Bu.o = P for all veJ(; 6.1

( E For example, consider the 2-dimensional heat conduction problem in the
D
o closed domain Q shown in Figure 6.1(a), where the curved part of the

LR N

LR

boundary 3Q (denoted by ao]) is thermally insulated and the temperature

C_ distribution on the straight part of the boundary 602 =09Q - 3Q, Is

h .-

L forced to be equal to a given function gx.y). If ©k.y) and fi.y) denote
o ~

-_I:'_:'. = the temperature and the rate of heat generation at any point x.y)eQ.
h art respectively, then the equations governing the heat flow q = (%.—?ﬁ) are
O

5 3 dp . 3 3w

A 9 S , 8 Sy . - 2.a)
F‘::_: ‘ gx wx x + 3y wy 3y f &.y) on Q (6.2.a
SRR =0 on 3Q (6.2.0)
ONC an 1

e = on 3 (6.2.C)
'Z::;.'.' o Here w, and w are functions that depend on the material properties (e.g.
*h‘ (Al

:j:' . specific heat) and %—ﬁ- is the derivative of u with respect to the outward unit
@ s normal to the boundary. The variational problem corresponding to equation
A 1.

(6.2) is to find a function oi.y)€eW 2(Q) such that

S

e s
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(a) The domain (b) The finite (c) Local node num-
of the problem. element mesnh. bering for element 5.
Figure 6.1
dv dy dv 3y dy¢
( — — _— - —— =
Jow 550+ ", 3y 3y X Wt J'ac)2 v - 3 9s
1.2
IQ f v dx dy + jaOz g v ds for all veW "~ (Q)

where J'ao is a line integral evaluated on the boundary 3Q,. The defini-
2

tion of the Sobolev space w1'2 may be found in books on functional

analysis such as [1].

In this dissertation, we will restrict ourselves to variational problems in
which Q is a bounded domain In a two dimensional space with coordinates
(x.y), and the Hiibert spaces M] and 3(2 are identical and from now on
cailed yf Moreover, we will assume that the operatorz% and the func-

tional Qhave the general forms

.t .80




2 -
Bu.or = fo L & ,0y) Dy@y Doy dx dy + &0 63w

r.l=0
Ly = [, tuy vay o oy + P! 6.3.0)
Q . * . »
where f and arl=alr' r.1=0,1.2, are given functions, ,9’° and .?‘ are

line integrals over the boundary 3Q of Q. D] and 02 are the differential
operators aix and aiy respectively. and D, is the Identity operator. that is
Dop=qp. The form of the integrals ,?0 and y1 will not be specified in
detail as this is not crucial for the purpose of our discussion.

The finite element process for the variational problem (6.1)/(6.3) begins
with the specification of a mesh that divides Q into m finite elements Q°.
e=1,-+-.m (e.g. see Figure 6.1(b)). In addition to its geometric shape.
each eiement is identified by a number of nodes. With each node. we
associate a basis function which is a plece-wise continuous function that

equals one at that node and zero at any other node.

4 ® L ]
(a) A three nodes (b) A four nodes (¢) A nine nodes
triangular element quadritateral element Lagrangian element

Figure 6.2 - Some element types

in the foilowing chapters, we will make the reasonable -- albeit some-
what restricting -- assumption that all the elements in the mesh covering Q
are of the same type, and that each has k nodes (Figure 6.2 shows some

element types frequently used in practice). Each node in a specific

R RGN . '.'.-'-..; ..'...~ _'. “‘ “' Lo ,_. ..-
7.‘-2‘1':\21\1.&\1\3.\'.\\'};1-'..'.’.‘ c..'l.:\.‘.\(.'-'_‘q'-'u'.'rl_ « -'-_'.'s_':'!‘. ™
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element e, 1<e<m. may be locally identified by a pair of indices (e.i). for
some i. 1Ki<k. Alternatively, a global scheme may be used to identify
each node by a unique integer j. 1</<n. where n is the total number of
distinct nodes in the mesh. The relation between the local label (e./) of a
node and its giobal label Is defined by some mapping
glob:[1.m]Ix{1.k] = [1.n). where j=glob(e.i). Accordingly. we may define for
each element o. the boolean matrix M® of order kxn such that for 1<i<k.,

1</i<n, we have

1 it glob(e.i) = |
{ (6.4)

0 otherwise.

The matrices M®, e=1,---.m and their transposes MeT will play an

important role in the finite element analysis.

As an example. consider the mesh in Figure 6.1(b). where each finite
element is labeled by a number e. e=1,--+,12 (written inside a circle), and
each node has been given a global label j. 1820 (written next to each
node). Figure 6.1(c) isolates the finite element e=5 and gives each of its

nodes a local number such that

glob(5.1) = 6
glob(5,2) = 7
glob(5.3) = 1
glob(5.4) = 10

Thus
0000010000000O0OO0CO0CO0OQOOQ

0O0000010000000O0OO00OCOCOO

00000000001000000000O

000000000100000000O0O0 O]

Given a finite element mesh. we reformulate the integrais in (6.3) as

the sum of integrais over the finite elements

R4
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Q(v,w = T [I
8=]

2
L 8,0y Dwadrdy +J0°1 6.5.2)
J=0 '

Q% r.i=0

m
qg(v) = }:] {J‘Qe f v dx dy + y"" ] (6.5.0)
e=

here SPo.e and '50]‘6 are the parts of ,5?° and y] evaiuated on the

boundary of eiement e if this boundary intersects with 3Q. and otherwise,

yo,e =y1.e =0

Now. the space J# of the functions v and v in (6.5 Is replaced by a
space of piece-wise spline functions over Q. that is ¢ and v are approxi-

mated on each finite element ¢ by

ox.y) 0y Vo XN (6.6.2)

vix,y) =

ll[*']x-Et’]x-

-~

Vg ¥g XN (6.6.D)

-~

where Oe,- and Vel are the values of ¢ and v at the node (e./). respec-

tively. and each ’el is the basis function associated with node (e.i). With
the approximation (6.6) in (6.5, it turns out that the values Yo | of the

approximate soiution pk.y) at the nodes of the mesh satisty a linear system

of equations of the form
Hu =0» 6.7)

where

1 u is an n-dimensional vector such that its im component u, is

the value of ¢ at the global node . that is, if i=globfe.j). then
u=ey |-

2) H is an nXxn banded, symmetric., positive definite matrix called the
global stiffness matrix. With the matrices M® of 6.4, H may be

expressed as the sum

hY
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mo T
H = ):] M e MO (6.8)
e= —

-0

of elemental matrices H 6

= H + Se. e=}.---.m. For a specific
element e. the (I.l)m entry of the kxk matrix H® s computed by N
the formula

H®

2
{.] - I‘,Iz:=0 [J-Qe af.l Df’e Y, D"@,I dx dyl 6.9)

=0

Then. H® is obtained by adding to each entry Hfl the term

Sle,l = y ?7 resulting from the discretization of ,f 06 in (6.5.a.
This term, ?7 Is a line integral that is not equal to zero exactly
when both nodes (e./) and (e./) lie on the boundary 3Q. Hence. -
most of the elements of the matrices S%= (Sle’,), e=1,-*+.m are _;'.::
zeroes. Moreover. if the boundary conditions associated with the )
problem are of the natural type [57). then the term yo disappears &
from (6.3.a) and all the matrices S° become zero matrices. In fact.
for any finite element probiem. the work associated with the computa-

tion of Se is negligible compared with that required for the computa- -

tion of H9 . ~

'y
AL

3) b is an n-dimensional vector cailed the global load vector which

may be expressed as the sum

s
.
.

m .
° +s°1 = ¢ M7 p° 6.10)

'3
v

Ad s

where the components of the vector s® are line Integrals over 4Q

th

and the / component of the elemental vector be is given by

o _
b = Io" f ¥y, o dy 6.1

The linear system of equations (6.7) may be solved either by a direct
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method or by an iterative scheme. Direct solution techniques are based on
the decomposition of the positive definite symmetric matrix H into two or

more matrices that have nice properties. and then transforming the system

(6.7) into a number of simpler systems. For example. assuming that H s

decomposed into the product of a lower and an upper triangular matrices L

:;-:: E- and U. respectively, then the solution u may be obtained by first solving the
‘.é e lower triangular linear system Ly=b and then using its solution y to solve
AR the upper triangular system Uu=y. The solution of the two trianguiar sys-
:;'_: :,‘:: tems is relatively simple. and hence, most of the work invoived with the
E solution of (6.7) is in the factorization H=LU. An advantage of the direct
" ;7 solution is that the factorization of H does not have to be repeated if we
': desire to solve Hu=b’' for a different right side vector b’'#b. which Is the
\ case in some problems where the finite element analysis is to be performed
'-f\: v for different load functions.

=%

Alternatively, iterative solvers start by assuming an initial guess uo to

5
DN =

FOCE the solution u ., followed by the application of an iterative scheme for
P <
(7.7 . . . 1 2 =
& {. obtaining successive approximations v .u",--- of w . The convergence of

¥

i, x
the iterates u].uz.-- + to the solution v depends on both the initial guess
o u0 and on the procedure used to derive u' from u’—1. In Section 9.2, we
S, o«

-':q’ .'_.

e will consider iterative solvers in more details.

S

. In summary. the linear finite element analysis Iinvolves essentialiy the
5’_:.::‘ . following four computational steps: 1) Generation of the finite element mesh,
):) :r
e 2) generation of an elemental stiffness matrix A° and an elemental load
S
j;:-f. : vector b° for each finite element e. e=1.---.m, 3) assembly of the global
A

::j e stiffness matrix H and load vector b, and 4) solution of the linear system of
o :- equations H u = b.
af ad
.r....
=
)

'....;L'. q- _“.‘
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Finally, we note that the solution vector u of (6.7) defines the function

¢ only at the nodes /=1.---.n. Given u. the value of ¢ at any other point

x.y)eQ may be obtained from the interpolation formula (6.6.a).

Remark 1:

In the previous discussion., we assumed that ¢ is a reai-valued func-
tion. However. the finite element analysis is also applicabie if ¢ Is a map-
ping into Rd, that is. a function with d>0 degrees of freedom. In this
case. the coefficients ar'I(x,y) and the load f (x.y) in the variational formu-
lation (6.1/3) become dXd matrices and d-dimensional vectors, respectively.
But the basic finite element technique remains the same and all the above
formuias are valid with the following interpretations:

1) Each component v, of the vector u is a d-dimensional subvector

that contains the values of the d components of ¢ at node /.

2) Each entry ﬁ'.e, in the elemental matrix A° is a dxd submatrix.

and each entry 57 in the elemental load vector 5°

is a d-
dimensional subvector.

3) The entries of the M® matrices of (6.4) are dxd unit matrices or
zero matrices instead of ones and zeroes, respectively. Hence, the

order of the linear system of equations (6.7) increases from n to nd.
Remark 2:

In some problems. it is natural t0 choose the function space Jf: Jt:)
such that any function wewo is equal to zero on a specified part aoocao
of the boundary dQ. Then, the basis functions ¥, ; associated with the
nodes (e,i)t-:aC)0 should be exciuded from the expansion (6.6). Although
this decreases the dimension of the elementai arrays H® and b° for the

elements that have common boundaries with aoo, it has the disadvantage of

causing nonuniformity in the computation of the different elements. A
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AR
‘_ common method for retaining the uniformity of the computation is to ignore

(; ! this condition and to Include all the basis functions in (6.6). Then for each

- node (6.i)€dQ,. the entries of H® ano b® are changed such that b} =0.
AN

-.‘.~ '.\.

:',3. v Hia/=° for 1</<k, j#i, and Hfi=1. This s equivalent with replacing the
0 ’ .

o th

L 7 equation in the linear system (6.7) by the equation ul=0. which guaran-

O tees that the solution is a member of the space W o
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7. A SYSTOUC SYSTEM FOR THE GENERATION OF THE ELEMENTAL
ARRAYS.

The purpose of the systolic system presented in this chapter is to gen-
erate the elemental arrays H® and 6%, e=1.---.m. for a given finite ele-
ment problem and a specific mesh on its domain Q. In order to simplity
the design and the description of the system. we assume. as in Chapter 6.
that all elements are of the same type. and hence that the number k of

nodes per element is the same for all of them.

In most practical problems, the coefficients a, r=0.1,2. in the bilinear

A
operator (6.3.a) are constants or slowly changing functions. Hence it is
very common to approximate these coefficients by piece-wise constant func-

tions on each element, in which case we may rewrite the formula (6.9) for

e
HY | as
e 2 e
HP =
1= C &, [ 0w 0w, poaa 7.1.a
r.i=0 Q
where afl are constants on the element e. Similarly. the load function

fix,y) in the functional (6.3.b) may be approximated by a piece-wise constant

function and hence, we may rewrite (6.11) as

e e
= 1.0
o] =t _[Qe ¥, 9 dy (7.1

where each % is a constant on the element e. This approximation, how-
ever. may not be suitabie for some applications, and sometimes it is more
appropriate to approximate f by a spline function in the same space as the
solution function ¢. In this case we use the same basis functions as in

(6.6) to approximate

l L

-3
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v

o.i‘x"v)

e./

k
fay) = L f
=

where fOI Is the vaiue of the load f(x.,y) at node (e.). With this. (6.11)

may be rewritten as

e _
bl-

(N It 3

fO,/ J'oa "0./ 'O,I dx dy (7.1.0)

/=1

In order to evaluate the integrals (7.1.a/b/c). an isoparametric transfor-
mation [57} is used (see for exampie Figure 7.1) to map the domain of
each element Q° onto a standard element § on some 2-dimensional space

(.y). namely

lki

/

Y X

x

S
r o

Figure 7.1 - An isoparametric transformation

K _ __ o
x = [ ¥,y x (7.2.a)
At
i= o,
y = L %k y, (7.2.0)
i=1
where i.(x_.y_) = ¥, G.y).yG.y). i=1.--+.k, are the basis functions in the
new space (.y). and uf.yf). i=1,---.k, are the coordinates of the k

nodes in the finite element &

= e
The Iintegrals are then evaluated numericaily over Q instead of Q.

Without entering into the mathematical Oetails, we give only the final formu-

R

e

- .-
R
o



112
las used to calculate H,‘ , and bf: 3
2 q :
e e C g - -
H/ ) = a’, L w_ det® y) D ¥ .y = i
h =0 g=1 ¢ g’ Cr¥i%rg’ O 1%gYg’ (7.3.a
]
q -~
o e 06— —. — — — .
b, =1 L w_ det J) &y ) (7.3.
’ g=1 9 a¥e’ ¥i%g 3.6
or
e k 9 o
b, = L fo, L w, det®y) ¥ .y) ¥.6&.7 (7.3.0
b3 e g2 e g¥g’ Yi%gvg) ¥, 0 ) 3.c

where q is the order of the quadrature rufe used in the numerical integra-

tion. ng.Fg). g=1.---.q are the quadrature points with weights w, and
deteoT,y_) is the determinant of the Jacobian matrix J° of the transformation

Q@®-~3. From (7.2), this Jacobian Is found to be

::::::r

k

L) g e e k

£, £, =[L B FED s S

_:.;::. 1.1 1.2 2 17,00y) X, 151 D'2 L0y X
L

L o o kK _ _ k _ _ __

o a1 Y2z L Daviar ,)_31 2 ¥y,

T

f"‘. Because of the regularity of the standard element Q. we can easily
LS - .
".':':': - —— - - 4 V, - - 37,
‘N find the formulas for ¥,.y) and its derivatives D,¥; =—— and D, ¥, =——

- ax ay

.‘::I_': Then the derivatives Dr;l' r=1.2 and i=1,---.k used in (7.3.a) may be

AL obtained from the transformation

7 e.-T

F1 = T 5% 7.4
Dy = W1 Dy, 3
R -3
o =
0,7 D,7, .
- o.T ~Y
::'-'.';' where [JGI-T is the inverse of the transposed Jacobian matrix (V" 1". This
'.:-;:1: inverse is explicitly assumed to exist. T
o S
O It should be noted that the quadrature points and weights as well as
s _ __ 97, __ 7, =
. the basis functions ¥, and their derivatives O.¥ =—— and D,¥, =—— do

. / 1 ) ax‘ 2 I ay
p 1
b
R N R e N T T o
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N not depend on the specific finite element that is to be processed. Hence.
'\-’\

. - =

{ ‘ they may be computed at the quadrature points (xg,yg). and pre-loaded into
::;: the system before it starts its operation which allows for their repeated use
-\':o h':

S during the calculations of H® and b® for e=1.---.m. On the other hand.
C the derivatives D, ¥, and D, ¥, in (7.2) have to be calculated by (7.4) for
- each element.

.T_:'.j -5 The following aigorithm, ALGS5. computes the elemental stiffness matrices
-:'J' :'.r

g H® for e=1,---.m. (The steps N1 through N5 in the algorithm are parti-
'f:::j ";:; tioned in a manner needed for the description of our systolic system). In
-( .-._

e -— - -
‘_f‘-' this aigorithm. we denote by V?(g) the value of the basis function '&l.(xg.yg)
o . and by A;(g) and v’((g). r=1,2, the value of Its derivatives L'Tr ;i(rg'?g) and
xS - — -

R D . . .

e r v,(xg.yg) respectively

M Algorithm ALGS
:w.:: .
) INPUTS

o n ¢ V?(g), A;(g), Af(g)). g=1.-++.q and i=1,---.k

o 2) For each finite element ¢=1,-+-.m

' -

a L. 2.0 ®y%). =1k

-.l:' - ! i

o 2.2) a® . r.i=0.1.2 /% note that a° = a® =/

A ' rdc T r.d l.r

AL

For each finite element e=1,---.m DO

s B
e
S N1) For each quadrature point g=1.---:.q compute the Jacobian of the
wLoT isoparametric transtormation from

o o o 1 1 e o
J;J(g) J%J(g) = Ab(g)-‘-A'&(g) X3 N
;:T-_E- N,@ Jp,@ 85@) -8, (@ 3
* Yk

& - N2) For g=1,---.g compute the temporary quantities
S
N
=

o, i
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N
e 1 1 o o 1 1
i T (@ .--T (q)] = [J22<g> -J,‘,,(g)] [A}(g)---Alé(q)]
o -/° o
e ](g) k(c) J]'z(g) J].](q) A.l(g)---Ak(q)
A .
N N3) For g=1.--+..q DO
.
e = /® e _ 4@ e
‘_ N3.1) det (g) J.l'](q) J2'2(g) J'I,2(a) J2'.|(g)
N3.2) Vi@ = (/det’ @) T @), r=1.2, i=1,-+ .k
S )
N N3.3) T (@ = w_ det®@) v (g). r=0.1.2, =1,k
N : g :
\‘};: N4) For i=1,---.k compute the approximate integrais
o
- N4.1) For j=1,-+-,-1
s J g
AR Yf, = I 57(9) v’.(a) r.1=0,1,2
30 ‘ g=1 /
Lortn
A Yl P
N NeD v, = L F@ v r=0,1.2, 1=0.++-.r
: ’ g=1
N N5 For i=1,--+.k DO
-_‘..‘
N N5.1) For j=1,--.i=1
e 2 2
- e e A
. H . = £ [ &, 7
1.j r=0 /=0 rd i
SRS 2 2
1 \. (-} = e :I '
X Ns.2) H =2 L G, a5 ) vj', 2
N r=0 I=r
it where c_  equals 1 if re/, and 0.5 it r=i. |
) r.d ~3
50
ONG The calculation of the load vectors b%, e¢=1.- - .m. may be inciuded in
'J'__-: .-_'4
_f::-_} ALG5 as an additional step. This step depends on whether we will use k
"~_ (7.3.b) or (7.3.c) for computing b®. More precisely. if (7.3.b) Is used then —
o N6 For i=).---.k DO
‘O q
e b? =1 ¢ 3?(‘;)
=1 -
.:: On the other hand. if (7.3.c) is used. then .
R _ 1
N N6) For i=1,--+.k DO
2 v,
N B = g g 400
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;}. Figure 7.2 shows a biock diagram of the systolic system that executes
- this algorithm. It consists of a local memory LM to store the pre-loaded
l values of Vlo(g), A,](g) and Ale(g), g=1.---.9. and six systolic subnetworks

N1---N6 that are arranged in a cascade such that the output of a sub-
network is an input for a following sub-network. Each sub-network is

designed to perform the computation in the corresponding step of ALGS.

respectively. The entries Hf/, i=V, ek, =100,

N
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”«e.: be‘ L
PTIY  TPETR A
I:l,--,k

Figure 7.2 - A general biock diagram of the system.

in order to compute the matrix H® for a certain element e, the coor-
aginates of the nodes (xl.e .ylie), i=1,-++ .k, and the coefficients af [ r.1=0.1.2,

for that element, are fed to the system via the subnetworks N1 and NS5,

f the symmetric

matrix H® are then obtained from the sub-network N5 after a delay period
of (q+3k+16) time units, where a time unit is the maximum time needed by
any computational cell in the system to perform its operation. This is basi-
cally the time required to perform a Multiply/Add operation. or a division

. e
whichever is larger. The subnetwork N6 is used to compute the vector b .
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The system described in this chapter provides a noticeable speedup of
order gk over the serial execution of algorithm ALGS. However. the real
advantage of the system lies in the possibility of pipelining the computations
of the stiffness matrices for e=1,--+m. and of obtaining one matrix every
3k time units. Of course, we also obtain the advantage of a non-conflicting

and smooth data flow in the system which greatly reduces the memory fetch

times.

in Sections 7.1 through 7.6, we describe the architecture of the six
subnetworks N1---N6. that execute the corresponding steps in aigorithm
ALGS. Moreover. we will derive the 1/0 description of the Iindividual subnet-
works and prove that the system generates an elemental stiffness matrix and
the corresponding load vector if appropriate input data are provided. Then
in Section 7.7, we show how one can use the technique described in Sec-
tion 5.4 t0 prove that the suggested system can be pipelined for the com-

putation of aill the elemental arrays.

it should Dbe clear that alternate designs for the components of the
system may be given. However, one advantage of the system described in
this chapter is its fiexibility in the sense that only minor modifications are
needed in order to use the system for different values of k (element type)
and q (quadrature formula). Moreover, our primary goal is to show the
applicability of the systolic approach to the generation of the elemental
arrays., and to demonstrate the effectiveness of the formal model for a pre-
cise specification and verification of systolic networks with computational

cells more complicated than those of the simple Muitiply/Add type.

7.1. The Subnetwork N1.

The graph of the systolic network N1 is composed of 2q interior nodec

as shown in Figure 7.3(a); each node is labeled by two integers (i.g) i=1.2

- . ..‘ -
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and g=1....q. where q is the number of points used in the numerical

I integrations (7.3). The graph also shows the color assigned to each edge.

namely r, p or 2z

oo
Pl

‘:Jﬂ
(a) The graph for N1 (b) The structure of a typical

cell Gi.g) in NI1.

> Figure 7.3

Each interior node (i.g) represents a computational cell whose operation

is described by the causal relations

. ci,gﬂ N (i,g (7.5.a

Piv1g = 0 P g (7.5.0

s 3k-2.1.1 -
Mirg = 05 Myyoy " Cm oo K ) (7.5.0)
where s=1 for i=2 and s=3 for i=1, and

. MCALRLE - (7.6.a)
:_:: Ai,g A [p:’,g cl.,gl 6.
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X" Adtit1k.3 o, g = &g (7.6.0)

RN

AN .
“ The graph in Figure 7.3(a) and equations (7.5), (7.6) specify N1 f.:om-

:::::j pletely. In order to anaiyze the internal structure of each cell (i.g) more

closely. we first note that equations (7.6.a/b) indicate that a cell shouid

:':‘ contain a multiplier and two accumulators (see Figure 7.3(b)). The accumu-

{. lators start operating at times g+i and g+i+1. respectively. They accumulate
’“-,; the output of the muitiplier every third time unit and reset themseives to

“' zero every 3k time units. The content of these accumulators at consecutive
:j-i time units is expressed by the sequences \; . and T,'g. As is clear from
equation (7.5.c), each cell contains also a multipiexer that starts operating )
at time g+i-1 and multiplexes the input LI and the contents of the accu- é
o mulators with time ratios 3k-2:1:1. The delay element n° is introduced in
Figure 7.3(b) under the assumption that the elements ‘*', A and M do not w
_1-.:.:: consume any time. In practical impiementations however, these elements do =
consume some time and consequently the element labeled n® has the func~ -
tion of a synchronizer rather than a latch. :Zij
:7.'-12 After having described the architecture of the network. we prove the -
_:.:::. foliowing proposition about the /0 description for N1. It is an explicit rela-
: tion between the network output sequences pa'g, ”3,9' g=l.---q. and the
:Zt:: network input sequences ¢, . My .. Py . i=1.2. g=l.-c-q. ._
4 Proposition N1.1 : I/0 description of the network N1. For g=1.,---.q. the ‘
following relations hold:
i g
'; Pag * a? P1g 7.7.a |
~'..f Myg = 0 Mg’:-;']']']'](naﬂ]’g 3 VR v n3x1'g , n3il.g> (7.7.0) N
E:::E where
. Mg AL Prg 09-141,'], (7.7.0) -
i 3
\'
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- = AGt+1.k3 i-1
xI,g A oL Py

=87 ¢, ) 7.7.9

-g

Proof: To prove (7.7.b). we first note that (7.5.a/b) have the solutions

& 4 = a1 ¢ (7.8.a
.g /=1 i
p,.'g =N pi,q (7.8.0)
Then from (7.5.c) we obtain for g=1,---,q that
- 3k-2.1.1 -
T3g = 1 Mgy Wag * rag - 22
_ 3k-2.1.1 3 ,,3k-2.1.1 - -

9] Maﬂ (9] Mg m].g'k],g')‘l,g) . )‘2'9 . x2'9>
where \; . and X g &ré as given in (7.7.0) and (7.7.d). respectively. Wit
Property P5 from Appendix A this may be rewritten as

- 3k-2.1.1 3k-2.1.1 .3 3 3= -
ﬂs'g = N Mgﬂ (Mg+3 Q1 ﬂ]'g . N )«].q . x]‘g) . xz'g . k2.g)

Finally, we obtain (7.7.0) by applying property P13 from Appendix A. Equa-
tion (7.7.a) results directly from (7.8.b).m
In order to perform the calculations in step N1 of ALGS for a certain

finite element e, 1<e<m, the input sequences must be described by

n, =0 (7.9.a)
4 -1 3 2 e
¢, = £, ©° &) i=1.2 (7.9.0)
g g3k 0001 2 2 2.2 .
91’0 =N P2 (M.l ((2) 'g,O . N6 \og'] . NN"e "pg.2)) g=1. q ((7.9.c)
where
e - = = =
T(ii) = T(‘tg'o) = T(*og,]) = T('pg,Z) k (7.9.d)
and
0
¥ 00 = Y @)
1
¢g'.'(t) = At(g)
t) = A2(0)
"q,z B {

e
Y
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in other words. e‘: and eg contain the coordinates of the nodes of the ele-

ment e, and tq o 1 and wg 2 contain the shape functions and their

Wg‘
derivatives. A pictorial representation of these input sequences in the case
k=3 and q=3 is provided In Figure 7.11 using a time diagram of the ele-

ments of the different sequences at consecutive time units.

Proposition N1.2 : With the inputs (7.9), the outputs of the network N1 are
described by

= ngf'l P3k 1.1 2 2.2

A2
P30 =0 % My O, o . 087, | . N6%, o g=1.---q 0@
Mg o = n? 8° g=1.++-.q (7.10.0)
]
e, _ e = /@ e e o
where T(8) = 4 and 8 ) Jl,l(g)' J1,2(9)' J2'](q) and J2'2(g) for

t=1. 2. 3 and 4. respectively.

Proof : The proof of (7.10.a) foliows directly from (7.7.a). To prove (7.10.b),

3k
2

ments of the argument are repeated twice in P g This repetition is only

we first note that the operator P in (7.9.c) indicates that the first 3k ele~

necessary for the operation of the subnetwork N2, and will not be con-
sidered here. Hence. we will replace the last 3k elements of the repetition
by don‘t care elements which reduces (7.9.c) to

_ g v L2 2 2.2
p'l,g = N M'I e ’g.O . e 'pg.'l . 178 pg,2) (7.9.e)

Now substitution of the input sequences (7.9.a/b/e) into the I/O descrip-

tion (7.7.b) results in

=0 M3k-4,1,1,1,1(°" N

'y 3 3-
g+3 29 ' "2.¢g

n . N X]’g . ). 7.11.a@

3.9
Here. by (7.7.c). the definition of the E operator, and the properties P1 and

P7. we find that

_ gti-2 ,2k.3 1.1 ) 2 e 2.2 ..
g =0 A M, 1. 06%te, %1 . N°8%le, 5" & D

a2
@, 0" ¢

and, by P14, that

PNCRTLI P, B
h
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+=1 ,1.k.3
= n9 A 2 £%1 7.11.0

x - 9 [iPa‘, = l

i.q
Similarly., we can show that

- = adt ,1.k3 2 e

"I.g n A <) [00,2 * &) (7.11.0
For a further simplification of the equations (7.11.a). we consider the

definition of the multiplexer operator with the restrictions (7.9.d) for the

invoived sequences. This gives., for g=1,---.q.

_ ~gt3k-) e
"a.g =N 8
e, _
where T(8) = 4 and
x2‘g(g+3k—1) for t=1
X, (g+3k) for t=2
8% = 2.9
*1,0‘9*3"‘2’ for t=3
ng(g+3k—1) for t=4

Moreover, from (7.11.b). P11, and the definitions of the shift and the spread
operators, we obtain that

1y - @t Q2 A1k x 28 -
)\2'g(g+3k N = [N e A ['pg'] £2 Ng+3k-1)

1.k.1 e
(A ['pg'1 * £2 N&k)
k k
e - )] e _ @
i§1¢9'1(i) 52(1) = Al.(g) xl. = J.m(g)

i=

where J? 1@ Is specified in aigorithm ALGS.

By a similar argument. it can be shown that 39(2), 89(3) and 39(4)
are equal to J?z(q). Jg](g) and ng(g)' respectively, which proves the
proposition and shows that the network performs successfully the caiculations

in step N1 of ALGS for one finite element @
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7.2. The Subnetwork N2
The graph of the subnetwork N2 is composed of q identical rows -
-y
g=1.---.q (see Figure 7.4(a)) where each row consists of three interior
nodes (/i.g). i=3,4,5. The edges are given the colors p.r.s and s as ,:‘-',
shown in the figure.
o2
<
s
S
Memory M .
~

Maemory

-@7
P P -

(a) The graph for N2 (b) The structure of a cell

(.g). i=3.4 in N2.

Figure 7.4 s

For a given row g. 1<g<q. the computation of a cell may be
described as follows: -
For cells 3.9) o
-3 -

Tag = T34 Pag = N Pag

= qad3] = ml g3k 7 B (7.12.2) -
a5 = 049" 1oy m MM EN my By ) 8T 12

." ° . - ;-- - ,{ ...
A '.~.‘.-.._-r.-‘- " .A(Ju ,.-*‘,.'q.A .'._hL\'.h s.sia;- y m




For celis (4.g)

"6,q =0 "4.g p5.q =n p4.g
- g+1.3.1 1.1.1, 3k k -
(o} = % -
5g = M lgg * My; (E:ﬂ[ Teg - 52*3 Teg 01 (120
For celis 5.9
_ 1.1 -
Prg = 0 M P5q - I5g - %55 (7.12.0)

From the above specifications. it is clear that cells (3.g) and (4.g).

_Kg(q, have identical structure (see Figure 7.4(b)) and differ only in the

reset times of their accumulators. multiplexers and memories. To reset
these elements at the proper time. external reset signal can be propagated

in the network as explained in Section 5.2.

Proposition N2.1 : The network I/0 description of N2 is given by
4

"6g - 1 Tag g=l.-++.q (713
= a M @ A Nag =1, 7.13.0)
P14 gtl P3g - 23.g - rag g=l.r--.q ((7.13.0)
where
= a2 x 3k _ R K
= = K 3 - 2 3k 3
Nag = [0 Py, Eg»,a Amy ) - 0° 0 pg o = EfL, Omy ) (7.13.0)

Proof : Equation (7.13.a) is trivial. In order to prove (7.13.D), we begin by

applying property P1.3 to equation (7.12.a):

s ad3 gl T

. 3k =
g (93,9 g+3

z -~
°5.g 3. p3,g Eg+2 ["3,g] . 0

=
Then. we apply property P14 and use 8 to replace sequences whose

values are irrelevant to our analysis. This gives

Isg T My IO 0oyt BNy My gl -ty T By gl 0D
which from P5 may be written as

054 = M;':i‘ o . Mg - 85 (7.14.2)
where ls.g is described by (7.13.c). Similarly from (7.12.b) we obtain

_________
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\"_\ «
s ~
e - - )11 - - o
o 959 = Maﬂ o .06 . g (7.14.b) b
'~~‘ where A, - is described in (7.13.). Finally. substituting (7.14.a/b) in Q
{I:j (7.12.¢). and using P13 we obtain (7.13.b), which completes the proof.m
o4 U
e >
b The input links of N2 are directly connected to the outputs of N1, and o
hence the input sequences m, g and Py g 9=1.-°-.a are described by the -
- formulas (7.10).
;Z-t;
f:: Proposition N2.2 : If the inputs to N2 are given by (7.10), then its outputs
. may be described by
1Y
o Teq = nd t3k*3 g0 g=l.-++-q (15a “
.t .
- g+3k+4 1,11, 2 2 2.2
et = =1 ¢+
N P79 = 0 My @ o - NOTY, . 00%F, ) g=leiig (5D
where T =T )=k and =T @) =12 (@), with T) (@) ana -
A 9.1V ¥y 2= Vg 1O @) ¥y =T Q). ¢ 9 8 .
- 7f(g) as specified in algorithm ALGS. X
‘\': e
:I::: Proof : The proof of (7.15.a) is trivial. In order to prove (7.15.b). we will -
bl v
{ ignore the vaiue of the first 3k+g+1 elements in the input p, g- @nd hence -
7 rewrite (7.10.a) as T
- _g3k+l 10012 2 2.2 )
_- p3,q =N M'l © 'g,O . N6 ‘pg,'l . N6 00'2) (7.10.c) -
'.':: In order to find the output sequences Py g we obtain an explicit
.\ ’
A'-!. ) A\' :
. description for xag and x4g by substituting the input sequences into S
-.".‘ . ’ -
(7.13.c/d). Indeed. from (7.10.b/c) it foliows that
::'_E:Z . =3k _ ~gt3k+1 11 2 2 2.2 -
i Pag " Egea Tag = 0 My @, o . ne%e, . A%, )
_:::’ x Egl: 3 af +3k -1 Be -
o
:_f" We then interchange the shift and expand operators using P6 and apply P18 :’-::
to get
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i“.""
L
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e

k g+3k-1 2

_ 1
Pag ™ Eg+a Mg = 0 o M

= o9 13- 1.1 2

3.-1 a2

g.}
F 4
= nd t3kt1 M}'”(o . ne? [J;a(g) .

A g2
R C R P -

. NT6%p

0g 11 -
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2 2,2
g.1 . N°8%

* £ g
2.2

¢.2

0.2 - 8% @1

x
5)

where. as usual. the sequences irrelevant in this context were replaced by

o'. Similarly. we obtain

K - ng1~3k+1

x
P3g g+2 "3 g = M

@6 .06 .nN%

1LY . * * 2.2

“;,1 @ . 0, oD

1
and thus from (7.13.c) that
P =
Ny, = ad P M1 Tt 062 W8 ) L e L 0D -
e g rsksz (143 o o n%e%1® . @ D
1 ‘ ‘ 219 - 5.2
x x
= I ¥3k+3 M) 6", ne? [.:22@) Lo .8 -
1.1.1 ’ 2 ’ =
M1 b . ne [J2'1(g) . wg'al . 0]
- 9t3k+3 1.1 2 . e - ® x
=N M] 6. NS [J2'2(g) . "’g,l J2.1(q) . qu.zl . 8)
By a similar analysis it follows that
_ ~gt3k+3 11,1 & x o 2 @ _ /@
A4,g =N M.' 6. 0. 0% fJ]‘](q) . 'pq,2 J1,2(g) . -pg..'l)
Finally, we substitute into (7.13.b) the computed values for XSg and
k4g together with the Input sequence qu and apply properties P5 and

P13 to obtain

_ ~gt3k+3 _1,1,1 _2 2 2,2 =1 .
p7‘g =N M.I e "g.o . e rg.'l ., e 19‘2) g=1. .q
where
- 4@ _ /8
’GJ“) = J2'2(g) . wpaj(t) J2'.|(g) . ‘pg'2(t)

2 1

"

g
This proves explicitly that the output sequences p7'g

step N2 in ALGS.®

] 1 - /@ =
Jool@) 8,(@ Jz'](g) A, (@) Tt @)

_ @ _ e -
Pg.o®) = I1 1@ ey 0 - U@ e @ Tf(g)

contain the results of




RN 7.3. The Subnetwork N3.

As in the case of N2, the subnetwork N3 is composed of q indepen-
dent. identical rows. namely. one for each point used in the numerical
integration (7.3). Each row performs the calculation corresponding to step
N3 in ALGS for a certain value of g. 1€g<q. In Figure 7.5. we show the
graph for the qm row of N3. The function of the cell (6.g) is to compute
the determinant of the isoparametric transformation as in step N3.1 of algo-

rithm ALGS. Its operation may be formally described by:

for row g of N3

- Al
* 6.9 n Ts.g . mra'g)

The cells (7.g) and (8.9) perform the computations in steps N3.2 and
N3.3 of ALGS. respectively. Their operation may be described by

1.2 2 2 .
Pg.g gt3k+7 X Prg - [Py 0 % 07
p9.g =N "a,g
"9,q n [wg . "a.q "a.g]

=M’ n

With this description and the inputs (9.15), it is easy to obtain the out-

g=l.--+.q. namely

put on the links p9,g and rg’g,
Mg = nd t3kt8 }1 3 92 Vo0 ne’ v n’e? v,  (16a
’ _ g t3k+8 11 ’ 2 ) 2.2 ’ ]
Pgg = 0 vg'O . ne° v, , . n"e vy 2 (7.16.b)

r - —4 r 4
= = v ng Vv,(@)
where vg'r(r) Vt(g), vg‘r(t) V'(g), and the values of r(g) and r 9

are as given in step N3 of ALGS.
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7.4. The subnetwork N4.

In this subsection. we describe a network that compietes the numerical

q
integration by computing the quantities ){: = T

g=1 F; vll for the ranges of
the indices in the corresponding step of ALGS. The subnetwork Is
described by the graph in Figure 7.6. The node I/0 descriptions of a typical
interior node (.g) /=9,---..8+3k, g=1,--.,q. are given by

. 2
"H"l,g =N ”I,g (7.17.@

piﬂ.g =N pl,g (7.17.0)
ci.gﬂ =N [C-' tm ' ] (7.17.0)

As this description shows. each ceill latches the p and r data streams
by two and one time units. respectively. It aiso performs a Multiply/Add

operation and puts the result on the zm output link.

Proposition N4.1 : The 1/0 description for N4 is given by

- o
¢ =00 ¢t

n1a

o 8979 -9 . . Pggl  1=9.c- .8tk (718

i.q+1 ] 9.9

g

Proot : To prove this proposition, we first write the solutions of (7.17.a) and
(7.17.0) in the form

2@ -9) -

9.9
_ U= P20 .. =1 ...
pi.g =N p9.g i=9, .B+3k., g=1, .q

"i.g =N i=9,+ - .8+3k. g=1,---.q
and then substitute them into (7.17.c). This gives

2( -9 . A9
c/,g+1 =N (c,'g + N rrg'g n Pg ] 7.19

By Lemma 1 in Appendix A. the solution of (7.19) for a fixed i. 9<i<8+3k

is then found to be identical with equation (7.18). This completes the

proof.®

q.". * .

.q:"n"--_'- _’.1; .\;.-
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b
nd
-
wz(<-9) 23 “s=K
Figure 7.6 - The graph for N4,

In order to perform the computation in step N4 of ALGS5. the input iinks ;;“‘

Z - i=9,-+-,8+3k should be permanently set to zero. That is to say. in

the 1/0 description (7.18) we must set ¢; 1 = t. where ¢ denotes the zero
sequence of Section 2.1. With this. we rewrite (7.18) as =

y . 3 i-8tq-g . i-9 .

- C,-'qﬂ = gEI n n T9.g * pg'g] i=9,---.8+3k (7.20) f.-:;
The next step in the verification of N4 is the calculation of the output
sequences for a specific form of the input sequences T9.q and Py g As S
Figure 7.2 shows, the outputs of N3 are inputs to N4, and hence ”g,g and
Pgg are described by the formulas (7.16). Unfortunately, it is not at all -

simple to find an explicit description of the output sequences for this

specific input. In order to simplify the equations, we will replace the index
I, 9</<8+3k by i=9+3utv. where the indices v and v vary in the ranges -
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(R
. OSu<k-1 and 0<v<2. More descriptively, we divide the 3k columns of N4
‘ . into k groups of 3 columns each. Thus. we rewrite the network description
'? (7.20) as
¢ - E QButvtita-g 3t N ] 721
uv.g+l g=1 9.g p9.g 21

| )
; Proposition N4.2 : With the inputs described by (7.16). the network N4 has
e
o the following output:
& _ 2Butvitw =
L . cu,v.qﬂ =N N,y u=0,---,k-1 and v=0.1.2 (7.22)
:‘. .‘: with
'i. L3S
7
N = = pm1-11 L2 0.y 2_1.vOl 2.2 2,v02
A :-:. Ty Ml © y - ne My - '8 My ).
A where O is a modulo 3 addition. w=q+3k+9, and we have for 0</<2.
A
1o i k-u it r< iy )/t"tli'u it r<l
X T(-,,u') ={ and nu' t) = 'I
'.‘: k=u-=1 if r>i t LU+ if r>l
l Proof : Using the input sequences (7.16) in (7.21) we obtain
RN q
LR = Sutvtw  3utv, 1.1.1 _2- 2— 22—
5 Cuv.gel g);n ™ My @, . ne Vg1 ATV,
- 1.1.1 .2 2 2.2

r
_ l M.l e vg'o . Ne vg,l . N8 vg,2) }
N _ 3utvew 9 IR 2 2.2
:_-_. =N gz___:.'“u.v.g * M1 () vg,O' ne vg,'l' "o vg.2)l (7.23)
y where again, w=g+3k+9 and xu v.g is found by properties P4 and PS5 to be
e V.
S equal to
o -
- 1.1, 2. u = 2.u — 2.2 u — T
S M1 o n vg,O . ne n vg... . TeTN vg,2) if v=0
P Movg = My @t 5 ne?nt Voo o 028% T 0 ity
. 1.1 2. u+l = 2 utl - 2,2 u = -
- ’ M] oen vg‘] . e n Vg2 ne n vg'o) it v=2
" The result (7.22) is then obtained by first applying P1 to perform the
A . + .
e multiplication in (7.23), then by pulling 0°Y" out of the M operator with
:j:: - the help of P5 and by applying the summation to the arguments of M (pro-
o
X
. ‘o ‘J‘ .A .5_;.. .1. .1 :l‘ ‘-. -k- “';\‘ \_‘-‘ ..;.‘. Y .“‘ .-. :- ‘A‘ L-- 'A.AL. &' \. \. \~ u k‘ L‘ 3_' LU L_‘_ L'L-L“L -Li.L‘-A ‘.L.L '.A N
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perty P1.2). As an illustration of the derivation procedure. we consider the

case v=1 for which we have

CA3utitw 3 900 2y —
Cyage =N 9)51 My ©%n g2t Vool -
2. = 2.2 U —
ne‘mn” v ]
[ g0 " Vgl et v, o vy.oP
= 3u+i+w ,,1.1.1,_2 utl 2,0 2.u 0.1 2,.2.u _12
n M1 e n n, . 16N n, . 176 N nu)
where., from P1, T(nﬁ'o) = k-u-1, T = T, ® = k-u and
2.0 g _ q
Ut = v x tut = G2 0 = .0
n, L, 0 00« vy gttrurd) L, @) %y @) 2o e
0.1 9 _ 9 o 1 0.1
® = = - 0
n, {_: [vglo(t) = vg'](t+u)] )_3 V,@) v,,,@0 =Y,
g=1 g=1
q q
1.2, _ - - =1 2 _ U2
n, ) {_:- [vg'.l(t) = vg'2(t+u)] = § [Vt (g) vtfu(g)] = Yt,t+u
g=1 g=1
Finally, we apply PS5 to get
_ 2@utbtw 11,1 2 0. 2 1.2 2.2 2.0
cu,'l,qﬂ =n M'I © LY ne n, A e My )

which is a special case of (7.22) for v=1, The cases v=0 and v=2 are

proved in an exactly similar way.®

Equation (7.22) shows that the output sequences (u.v.qﬂ contain the
resuits of the numerical integration needed for the caiculation of the stiff-
ness matrices in the next subnetwork N5. It also specifies precisely the
time of each output data item. In Figure 7.7. this specification is transiated

into a time diagram. where we plot the elements of ¢{ versus time

u.wv.qgtl
for the special case of k=3 and q=3.

7.5. The Subnetwork NS.

The network N5 Is composed of three different rows (see Figure 7.8).

Row q+1 contains 3k identical nodes. it receives the constants af, on the

ol
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Figure 7.7 - The output of N4.
links pg'q”. '9,q+] and sg'qﬂ and distributes them appropriately on the

b colored links such that each integral Y:; appearing on a z-colored link

meets the corresponding constant a: at the right time. Row Qq+2 aiso

!
contains 3k identical nodes and computes the partial sums
2

2
roo_ e Jd e Jd —; .
Ui.l IEO a , Y;', and /Er (cr,l ar‘,) Yf" for i#j and i=j, respectively.

where is as given in ALGS. Finally, row Qq+3 contains only k nodes

2
that complete the sum H,e,. =T U: ; The edges of the graph are given
. reo i

the colors p. r. s. b. 2, zo. 21 or 22 as shown in Figure 7.8. Note that
we used three different colors zo. z'| and 22 to satisty the restriction that
no two edges ending at a node have the same color. To simplity the

analysis, we consider each of the three rows separately.

We consider first the row q+1 in which each cell simply latches the




X
it
St
L8
;
Figure 7.8 - The graph for NS.
four data streams 2, p. r and s by one time unit. and seiects the output -
!\.
on the b link to be 3
n [hi "i,q-r'l] if i=9+3u. u=0,--- k-1
Bi.q+2 =N p,.‘qﬂ if i=94+3u+l., u=0,-++ k-1
n ol.q+'l if i=9+3u+2, u=0,---.k-1
=
where h, =0.5 for /=9 end h, =1.0 for i>9. The factor 0.5 is needed to
implement step N5.2 in ALGS. where only the Yf,’ I<r are explicitly avail- -:.':
able for the computation of Hf,. while we have Y, ,’ = Yj,’ for I>r.
For the proper operation of the system the input sequences should be _
described by
_ AW 3 @ .
"9,q+1 =N Pk(ao) |
_ ~w 3 ¢ |
pg"”1 =N Pk (a]) (7.24) -
_ w 3 e
where for j=0.1.2. T@® = 3 and @) = &° with O denoting o
T i i t-102/ .t-1" ’ :
once again. the modulo 3 addition operation. More descriptively. we input
%
. oo . .‘_-. R S v\ B Ry SR A ..\-.\'.‘ .-_'.\.'.‘_‘.\i.:
N A VP WUV TSRS VL SR, W, S UL DA AL SIS WL
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on each line three of the constants af,. r.1=0,1,2, repeated k times as

indicated by the piping operator P? (for more details see Figure 7.11).

Using the two indices 0<Lu<k-1 and 0<v<2 as in the previous subsec-

tion. and noting that the input c/qﬂ is given by (7.22), we can easily

show that
cu v q+2 = n2(3u+v)<l~w+1 ;’-U , (7.25:2)
o _ Butvtw+l 3, e
Bu,v,q+2 =N Pk( hu.v - a ) (7.25.b)

where hu v = 0.5 if u=v=0 and hu,v = 1.0 otherwise.

j L
'B¢,,oz

‘:’03

<+ 703

"’03

o

Figure 7.9 - A typical cell in row q+2 of N5
The 3k cells, (.g+2), 9<i<8+3k. in row Qq+2 have basically the same
structure. each is a multiplier/adder equipped with a demultipiexer that dis-
v .
tributes the resuits to the output links p,+1'a+2 and cu,q+3 (see Figure 7.9
where u and v equal the quotient and the remainder of ﬂ, respectively).

3
Formally, the operation of each cell (.q+2) is described by

Pivige2 = M gewa1t - Pige2 * 2/ (7.26.2)
v 1.2
Cuged = O Mg 1®igea v X - 0 (7.26.b)

= i manent t ot

where \; Bl,q+2 * (I,q+2 and the input pg.q*2 is permanently set to
v

the zero sequence (. For a description of the outputs ¢ q+3 we soive

(7.26) using Lemma 3 in Appendix A. This yields

Py e et e e T T e
Lo M e e
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- " a
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1.2

LI PR ¢ VR =9
C:,q+3 = n M,‘Lgﬂ,ﬂ ﬂﬂzk,-_, LR W RS i=10 (7.27
n M,];29+,+,< tﬂ4x,_2 + n"’x,_1 LR RS T E § BRI T T4
where, by (7.26) and (7.25), x, = x3u+v+9 is given by
xi = n3u<l-v~t~w'l'1 [PI?(hu,v 'av) x nSus ;’-u,vl
= n6u+v+w+1 [PI?‘U(hU.V 'aV) * nv ill.Vl

Using the definition of ?)'U‘-' from Proposition N4.2 and with the help of pro-

perty P18.2 we rewrite A in the form
Gutviw+l v .1, .
A, =0 n M; 1(e"‘ug" . ne?ylvel naezuf'm% 7.28)
where. for r=0,1.2 .
r.vQar _ (-] r.vQar = e r.vOr
K, = hu.v av((vor)-r‘l) - M, hu,v ar'vn‘_ n,
. r.d, _ r.l
that is T(uu ) = T(nu ) and
ey =n 2% ! (7.29)
u uwvy rJd u '

Proposition NS5.1 : With the input described by (7.22) and (7.24). the inter-

v

mediate sequences ( v=0,--+ k=1, v=0,1.2, are given by

u.g+3’
6utviw+l 1.2 3.2 22 2.1 2.0 * -
N M, @"e i, + w, .yt #, 4. 0) for v=0
v _J).6utvtw+l 1.2 3 .2 1,2 1.1 1.0 o -
Cugea =40 My @Q76%w, ™ + u, +au,/1.0) forv=1 (7.30
n6u+v+w+1 M:.2 maezmg,e , u‘(J)J + ug'ol 8"y for v=2

. r.l
where we extended the definition of uZ’ such that u_) equals the zero
sequence.
Proof : For the case i211. we first use PS5 to rewrite (7.28) in the detailed

form
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Su +w 1.1 . .
n M) mse"’uﬁz , ne"’ugo . nze"’u;") for v=0
) eutw+r 111, 3.2 1.
x = M@ e"uue , n‘ezuﬁ'o . n"’eeug") for v=1
6u tw+2 1.1.1 )
n M) (n?‘ezug2 , n"’e%};0 , n592u5'1) for v=2

Then, for the evaluation of ANy = N3y +v'+9: We note that 0<v’<2 and

hence i-1 = 3u+v+8 should be written in the form 3(w-D+2+9, 3u+0+9 and

3u+1+9 for v=0,1 and 2. respectively. With these forms for i-1 in (7.28)

and the help of P5 we get

6utw ,,1.1.1 3.2 2.1 202 2210 .
n M1 n"e K, - ne B,y - a-e “’u-‘l) for v=0

2 6utw+l 1.1 . .
L I O A R n'e?u?? n?e?ud% for v=1
BU+w+2 M:.l.1m362u2,1 %% | %2,20) for v=2

Similarly, we write i-2 as 3Ww-1+149, 3Ww-1)+2+9 and 3u+0+9 for

and 2, respectively and get

6u +w 1.1,1,_3.2 2.0 2 0,1 2.2 12 _
N M] n-"e K,y Ne K,y - n°e ”’u-l) for v=0
4 _ 6utw+l ,1,1,1 3.2 1.0 4.2 2.1 2.2 02 -
", =4 0 My @Te%e, ) . ety . nfetu, ) for v=1
06u+w+2 M:.l,lmae2u3.0 ‘ n492u;.1 ' 0592“5.2) for v=2

Then by adding these three formulas to get A*x _, + 5 VR

and by substituting the result in (7.27), we directly obtain the equation
(7.30) for 1Su<k-1.

The case u=0, that is /=9.10 and 11, can be analyzed in an exactly

similar manner yielding the result

E
Qfutwtvtl M:I|,2(n392 [u5'2l ) for v=0
v 6utw+v+l 1.2 3.2 1.2 1.1 * ¢ =
- , or v=1
£0.9+3 n M @6 e, + w1 . 8
pBUTH I 12362 (02 w00 e tor ve2

which by defining ur_'; = ( may also be put into the form (7.30).@

. 2

1 .
Finally. each group of three sequences ¢, o.a. &, g43 N0 &, g43 '8

.......

P
.

AR S O AR I S e T
e e o T e T e
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N
G
_.:::::f considered as input to a cell (w.q+3). 0<u<k-1, in row q+3 of N5. The
o operation of a typical cell in row q+3 is formally expressed by

- 6utw+5.3.1 ,1.1.1 1 2

Cygra = fle, - A Moy wss €y u.g+d * Cu.qes - Sy qea) 73D
1.1,1 = = 2.0
= . M
mcu 6u+w+5(° - 6. I Cu.q+3 t ncu .g+3 + cu .q+3 Dl

where c, equals to 2 for u=0 and to 1., otherwise.

By substituting the sequences (7.30) into the network description (7.31)

we easily find the description of the output sequences as

6utw+7 2 —e

Cyqea = 0 e” u, u=0, k=1 (7.32)
where
2 2 r=1
r.d ,

T Cu' +L L all it u>0
r=0 |=r r=1 =0

,‘,,: =
2 2 / o
L L uf,' it u=0 =
r=0 /=r

Using the definition of uZ" from (7.28/22) in (7.32) and comparing the -

result with step N5 in algorithm ALGS, we readily prove the following propo-

arn
=4
sition:
Proposition N5.2 : if the Inputs to the network N5 are given by (7.22) anc
(7.24). then the network’s output sequences are given by
z A3
o ¢ = afUtwr? g2 oo u=0.- « k=1 (7.32) ~
I u.qt+4 u
Y o
N -
- where Tz = k-u and u. @) = H® o
{._ ", u t.ttu -
d]
.-, Proposition N5.2 states that after an initiai time period of 6u+3k+q+16
o
X units. each output link ¢, q+4 will carry the elements of the ot off-
(RN ‘
£, .
[ diagonal of the elemental stiffness matrix H® separated from each other by .

2 time units (see Figure 7.11).




7.6. The Subnetwork NG6.

. The purpose of N6 is to generate. for each finite element e, the
entries b,°, i=1,---.k in the elemental load vector b°. The design of the

subnetwork depends on whether we apply step N6 or step N6 of ALGS to

- generate b,e. In the following. we consider each case separately.

7.6.1. Realization of step N6 in ALGS.

in order to compute bf by step N6. the values of the load f® at the

current element e should be supplied from outside the system. On the

, " "J

R WA

other hand. the Qquantities 3?(9). g=l,-++,q. i=1,---.k are readily available

.
ﬁ- - . o0
e on the output links p3k+9.g' g=1. .q of N4. More precisely. replacing
e non relevant information in (7.16.a) by don‘t cares. we may write the
o _
{':- sequences on the links pSk+9,g' g=1. .q as
_ 6k _ ~gt9k+8 _2 — _
E 173“_9'0 =N "g,g =N e vg'o g=l.---.q (7.33)
RN
R here T(v_ ) = v = P@
-(.-::' where (vg‘O = k and vg'o(t) = v, @

Figure 7.10 shows a realization of N6 by a systolic network that is to
- be connected in cascade with N4. It is composed of gq+1 computational
cells whose operations are described by

a 1,2 x

CSkfg.g‘f1 = N Mg (IC3k+9'g + "3k+9,gl . 0) g=l.-++.q (7.34.2)
L
o ’ =am?Za =7 1,01 (7.34.0)
ny *3K+9.9+2 q+1 "“3k+9.9+) 3k+9.9+1" h

where the colors of the links are as shown in Figure 7.10. Note that the
cells in N6 are either simple adders or simpie multipliers that operate once

every three time units.

S The input links Pak+9.g’ g=1.-+-.q are connected to the corresponding

output links of N4. Moreover, we set the link 2

3k +9.1 permanently to zero
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- Figure 7.10 - The graph for N6. X

‘w'\J :"
- e ~ -
::._‘ and supply the load /- through Pay +9.94+1° that is

o B} -
, Cantgy = ¢ -
] - +9k+9 _2

< Takeoqr = 0 o ¥’ (7.39)

L ey
o> . DY
Ao —e

T where T@®%) = k and ¥°) = 1%, tor any t<k. With these Inputs. it is .

( . 2

straight forward to prove that the output on the link 23k+9.q+2 is described .
% by
R q+9k+10 _2 — B
" (3k+9.q+2 =N e Ky (7.36.a) -
o where T(9) = k and i@ = b. That is N6 does indeed generate the

,:'.j'_" elements of the load vector b®. From equations (7.32) and (7.36.a), it is .:::
h@: clear that the elements of b® and H® are generated from N5 and Né. —
e . )

0% respectively, at the same rate. The initial delay on the individual output

t‘_\.f: links may be changed. if we wish, by adding the appropriate number of -
.‘; latch cells. For example. by adding a cell that delays the sequence in -
o

< (7.36.a) by six time units and produces the output on a link labeled 2 q+4’

‘_:; : we obtain an output sequence that has the same form as the sequences .
@ in (7.32), namely -2

oo _ Bktwt? 2 —e

‘-’ ck.q+4 =N e wu, (7.36.b)

'...'

o :
i -

ST -.‘:\';~.'$:;\:_‘.'.'-:. .
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7.6.2. Realization of step N6 in ALGS.

One can look at step N6 of ALG5 as a matrix-vector muitiplication

b° = Y F where the entries of the vector F = ( f i=1,-++k ) are the

e.i’
0.0

values of the load function at the nodes of e, and Y = (Yi i i.J=1,°++ k)

iIs a symmetric matrix. Fortunately. the values of Y?lo are availabie on the
output links zu,o,qﬂ' u=0.,--+.k-1 of N4. More precisely, from (7.22) we
have
_ ~butw _2 0.0 =
Cu.o.qﬂ =N ) n, u=0,--- k-1
0.0, _ , 0.0 - 0.0
where T('nu ) = k-u and n, t) Yt.H'U'

This form of the matrix Y enables us to use the matrix-vector multipli-
cation array of Section 3.1 to compute the components of the product vec-
tor b% = (b,e, i=1,-++,k} at a rate compatible with that of the generation

of the elements of H®.

To summarize the behavior of the Integrated system presented in this
chapter., we show in Figure 7.11 a time diagram of the data on all the
input and output links of the global system of Figure 7.2. It represents a
translation of the sequence equations (7.9), (7.24), (7.32). (7.35) and (7.36.b)
for the special case k=q=3. The data items in the input sequences C]. (2.
"9.9+1° P9.q+1° 9.9+ and ;3k+9.q+'l depend on the finite element that is
being processed and hence must be provided from outside the system. On
the other hand. the data in p]'g. g=1,-+--.g do not depend on a particular
finite element ana thus are provided from a memory local to the system.

Note that we assumed that the network of Section 6.6.1 is used for the

generation of the elemental load vectors.

in general, the time for compieting the computations for one finite ele~

ment is 9k+q+10 time units. In the next section, we will show that the

computation for different finite elements can be pipelined through the system

]
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and that the elemental arrays can be generated at a rate of one stiffness

' matrix/load vector every 3k time units.

. 7.7. Verification of Pipelined Operation.

From the previous description of the subnetworks N1 through N6, it
._ should be easy to check that all computations are inert in the sense
defined in Section 5.4, and hence that the m computations corresponding to
the m finite elements can always be pipelined through the subnetworks.

Moreover. the techniques of that section may be used to prove that we can

T -
s _r L]
LAY
. K
.
.
f
'
ataltactns ol Biolindit .t e D0 T e A Sl 8o R PSR K oaa s A - MR A s A4

Car achieve the maximum pipeline efficiency by taking the pipe separation 7=3k,
T which is the maximum span invoived in the computation corresponding to
- one finite element. i
- The proof procedure is basically the same for the six subnetworks, :

hence. we will only demonstrate its application to one subnetwork. namely

' N4. Recall that in Section 7.4 the network /O description of N4 was found

-~ t0 be given by equation (7.20). which is

”9,g

q
_ i-8+q~-g ,./-9
. ci,q+1 =L n n

* Pg ] i=9,+++.3k+8 (7.37)
o g:] .g

Moreover, when the inputs for a certain instance c® of the computation are

e M o ol oY T
M LA ATOA .
-

1

ng = nf tHE 7; g=1.-++.q (7.38.2)

s e _ _gt3k+8 - ...

- p9,g = N vg g=1. .q (7.38.b)
b."' -
o then the outputs are given by
\" --
S o  _ 2+3k+q-9 e ol
:j.' where the detailed forms of the sequences v; and 7; containing the input
::.' data for C°. and the sequences 'n‘.e containing the results of c® are speci-
[T .
< tied by (7.16) and (7.22), respectively. For the following discussion. we @o
SR ) - _
R not need these detailed forms. It suffices to know that T(vg) = T(vg) =3k
LR
oL e e e e T e T L S T T e A

% e e " e
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and T)) = 3k-G-9), and hence that the minimum pipe separation is 7, =

3k.

:.-, If the computations for the different eiements are pipelined through N4
SN -
o~ with a separation of 3k. then the inputs should i.ave the form 3
e -
. *  _ gt3k+8 3k  —e _ _g+3k+8 3k -(@+3k+8) _e =~
7r9'g n Pe--l.m(vq) =0 Pe=1,mm ”9,9) 0
and -
= g+3k+8 3k e, _ _gt3k+8 _3k -(@+3k+8) @ T
pQ.g 1) Pe=’l.m (vg) =N Pe=1.mm p9,g) =
where we followed the notation developed in Section 5.4. Using this in the -
network I/0 description (7.37), we get the pipeline outputs in the form -
" - E ol ~8ta-g -9 n§+3k+a K @t3kt®) e |, -
f.q+l g=1 e=1l.m 9.9 .
+3k+8 3k ~(@+3k+8) e o
n? Posy.m® Py ¢!
Now. by properties P1 and P8 in the Appendix we obtain
e
* i +3k+q o3k G+3k+q) 3 _i-8+q-g i-9 _e e -
(i'q” =N Pe=1.m( n 021 n mn ”9,9 = p9,g] ) _
which by (7.37) and (7.38.c) reduces to )
"= qltKta pOk  I-9 e 7.39) =
i.qtl ~ e=l.m / ’ .
i-9_ e, _ e, _ .
Finally. because of T@ “7p,) = l—9+T(ni) = k, we use P8 to write
(7.39) as
- _ ~2143k+q-9 3k )
- Cigar =0 Pe=1.m @
s which proves that the sets of results (n}: i=9.---.3k+8) of the different
1 -
@, instances e=1.---.m will be correctly produced at the rate of KT it the set
:E'.: of inputs ('173 , v;: g=1.-++.q) are pumped through N4 at the same rate.
:Z:: Similarly. we can prove that the other subnetworks can operate suc-
® ,
. cessfully at maximum pipeline efficiency. Given that the output of the com-
D
l:j putations associated with a specific element e is described by (7.32) and

e

o R . Cae
e e T Sl TN
RO A S S AEINS IR W W P /. VL PRy




(7.36.b), it is then easy to verify that the results of pipelining the computa-

tions associated with the m elements, e=1,---.m, is described by

4

6utw+7 _3k 2 —: ) (7.40)

u.qt+4 =n Pe=1,m( ©

where 17.3 is as described in (7.32) and (7.36.b) with the superscript e used

to designate the results of the computations associated with the element o.

Clearly. (7.40) shows that the system may compute all the elemental arrays
in a time equal to tc+3k(m-1). where tc=9k+q+10 is the time consumed by
the first instance of the computation, that is the time for the generation of

A and b'.

Remark 1:

A careful examination of the system presented in this chapter shows
that the time of the computation of the m elemental matrices and m eie-
mental vectors may be reduced to t'c+(2kﬂ)(m-1) for some special prob-

are equal to zero for r=0 or [=0.

HPRPWE PR T W S P

lems in which the coefficients ar’/

Examples of this important class of problems are the heat flow, the plain .

strain and plain stress problems [57]. To obtain this time reduction, some
control parameters have to be changed as well as the forms of the input
sequences. At this point we note that with the technique of Section 5.4, it
can be proved that a successful pipelining of the operation on the moditied
network requires a pipe separation 7 equal to 2k+1. This is larger than the
minimum pipe separation 'rm=2k for the computation, which means that the

modified network cannot operate at maximum pipeline efficiency.

Remark 2:

it may be sometimes desirable to slow down the rate at which the out-
put is generated. More specifically, we may require that the output

sequences have the forms

Coe e

D .
e NN W A S ML . . . »
- . » - - . - - - - - » - » - . . . - . . CR R T DY 0 . -
A At ot atata e iatatatata tanlane tte et 2 At et a Al A at A a W a
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c Qu+tk)+q+16 _c-1 —e
u'q+4 = e uu u=0:. ¢ .:k

4 =N

for some integer c 23, rather than c=3 in the formulas (7.32) and (7.36.0).
This flexibility may be accomplished by allowing for a. modification of the
control parameters in the systolic cells. This is especially appiicable if the
cells are controlied by external control signais that propagate systolically in
the network. In this case the form of the input should be changed accord-
ingly and the separation during pipelined operation should be set to ck.
We will not consider here the equations that describe the operation of the

modified network in any detail.
Remark 3:

In the case of d>1 degrees of freedom per node. (see Remark 1 in

in ALGS5 are dxd matrices and the

entries H’.el. are dXxd submatrices. In order to compute the d2 eiements i

.

Chapter F). the input coefficients af,

H®  without slowing down the system, we may replace the subnetwork NS

i.}
by d2 identical subnetworks, each of which generates the corresponding

e

entry in the submatrix Hli

when provided with the appropriate entry in the
dxd matrices a:,, r./=0,1,2. Similarly, d identical coples of the subnet-

work N6 are needed for the simuitaneous computation of the d components

of the subvector bf.
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8. THE ASSEMBLY STAGE.

AN
I
.
.

The elemental arrays H® and b® generated by the systolic system of

the last chapter are the main contributors to the global stiffness matrix H

L.

A .
N and load vector b. The assembly of the contribution of a specific finite
O
L]

T element e to the global arrays begins with the modification of H® ana 5°.
AN If necessary. to account for the boundary conditions. The elements of the
il

=0 =0

AT modified arrays H~ and b, e=1,---.m are then appropriately scaled and
*:j:f assemblied according to the formulas (6.8/10). In order to scale the arrays
i q; of a specific element e, we need to know the global labels of the nodes
5N
o .';., (@./), i=1.-+-.k belonging to that element. Given the local/global mapping.
.;-,:.. ~‘:
_‘_3{ the assembly of A° and b°. e=1.---.m may be described by the following
. ..
) i
( E algorithm:

:'.‘_:: - ALG6
T 1 Initialize the global matrix H and the global vector b to zero.

] O =

- L. 2 FOR e=1 TO m DO
o 2.) FOR i=1 TO k DO
W)
':' A 2.1.1) FOR j=1 TO k DO

t . . . -0

R H(glob (e.i).glob(e.j)) = H(glob(e.i).glob(e.{)) + H! ;

. I~
2.1.2) b(gioble.i)) = b(glob(e.i) + b'.

®: In Sections 1 and 2 of this chapter. we deal with the generation of the
Ll global labels and the modification of H® and b® to satisfy the boundary
-:ji:: ) conditions. Then in Sections 3 and 4, we discuss the parallel implementa-
. tion of the assembly stage. and finally In Section 5. we show that the

] .4
o assembly stage may be eliminated if the resulting system of linear equations
od L
A
2
SR

9 !
& |

a v
3
.
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(6.7) is to be solved iteratively. 5
'\:" It should also be mentioned that Law [34] suggested a systolic archi- é
:_ . tecture for the assembly of the global matrix H. However, the timing and -
:i::t form of the input data required by his architecture are not compatible with \
:‘.:' the output generated by the system discussed in Chapter 7. Moreover., Law
L -
, assumes that each cell in the array does perform matrix operations, which ’:
of course requires a larger clock cycle than the one for the simple opera- -
: tions used in the system that generates H®. For these reasons. we were ~.
-‘_.\- not able to use Law's array In our design. This, of course. does not -
S_ exclude the possibility of employing his array in other designs of paralie o
": finite element systems. >
-‘— .
8.1. Generation of the giobal labels. s
The purpose of this section is to design a subnetwork that associates

‘. the global labets glob(e.) and glqb(e.p' with each Hla, / generated from NS, §
and adjusts the entries of H® that correspond to the nodes at which the 5
, solution function should be zero (see Remark 2 in Chapter 6). :;:'
-
7 W
-
. Figure 8.1 - The graph for N7 =
:’ In Figure 8.1, we show the graph of a network N7 that performs these

i)

-E two tasks. Its input links z, q+é’ u=0.---,k-1 are to be connected to the .
‘. corresponding outputs of the subnetwork N5 that carry the elements ot H® ;_«

1

as described by equation (7.32). The Iinput links 30,q+4 and ro'“_4 carry
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VNN
':_'.-:: -~ identical information. namely the giobal labels of the nodes (e.i), i=1,--«.k.
AYAS

- More precisely. we have

o T
e . _ QWt7 3k 2 e .
S %.9+4 = Pogrs = Fao (@ 77D ®.1.2)
Moo where T(»® = k and v°@) = glob(e.t). Finally. the input link Po.qes Car-
,.,, Q' ries a single Dbit for identifying the nodes at which the solution shouid be

SO 4

.4

L zero, that is. the nodes that lie on aoo. More precisely, we have

SOy

N - ~Wt7 3k 2 e
e ) Toq+s = 0 Po=1.m¢ ® 75 8.1.0)
.""A :?. e

oo where T(‘yo) = k and

" .

','\‘:, )

o 1 if node (e, €38Q

NCU I e 0

-: Ll - 70(“ = {

- 0 otherwise

A 2!

::’::: ;;j The operation performed by any of the k cells in the network is very
e, <
j-:-", ) primitive. First., each cell delays the data on the s, r and p links as fol-
{ B ows
6u
o« . - =0 ¢+ ¢ ¢ -
e puﬂ.q+4 n pu,q+4 u=0. k=1
YS o =0 g u=0,++.k-1
R utl.g+4 6u u.qté : ‘

it ~ Tutr1.q+e = Ty g+a ¥=0. k=1

= e}
ST

N This ensures that for each ceil u the time of arrival of HfHu on the link
\1... .
N~
‘{-\ ~t zu q+4 coincides with the time of arrival of glob(e.t)., glob(e.ttu) and
SO s .

e

. 'yo(t) on the links ru,q+4‘ 3u,q+4 and pu,q+4' respectively, thus allowing
- the cell u to modify the elements of H® appropriately. and to produce the
'{'._:; modified elements on the output link Zz, q+5° The cell also produces on
:;-, the output link bu q+5 the pair ( giob(e.t), glob(e.ttu)-glob(e.t) ). This
:.-I;-; pair specifies the location at which Hle/ is to be accumulated. assuming
::fjt: that the global matrix H is stored as a band matrix. In terms of sequence
;".‘; 5 equations. this translates into the formulas

4 | S
VR 6utw+8 3k 26

< . = =0 ¢« k- 2.a
.}:." s cu,q+5 n eﬂ'm(e uu) u=0, k=1 (8.2.a
'A." )
N
_';:.‘ ‘e

- i

AR
N ‘
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AW _ SButw8 3k 100 26 x
S By qes = 0 Paztm( My @\ . n6®X® 6™ u=0.--- k-1 @2b)
' J'{ where E: is as in (7.40) except that the entries of H® are now appropri-
Lo
E:.: - ately modified. The sequences kz and T: are described by T(x:) = T(T:)
= k-u and

0y) =

AO@) = glob (e )

I:(r) = glob (e.t+u) - glob (e.t)

Finally, we note that a cell (k.g+4) may be added to N7 to modify the

elements of b° and associate with each bie the global label globce.i.

8.2. Essential boundary conditions.

The essential boundary conditions are the ones responsible for the
terms containing line integrals In the variational formulation (6.1/3). It was

shown that in the finite element approximation, the effect of these terms

may be isolated in the form of a matrix s® and a vector s? that are to be

added to the elemental arrays H® and b®. respectively. However. for a

given probiem, most of the arrays s® and s® are zero arrays. and if non ;!

zero. they contain only few non zero entries. Consequently. adding special !
hardware for the computation of the few non zero entries of s® anag s°.

e=1.---.m Is not justiied from a practical point of view. especially since

“
.

the general formula for the generation of these entries is complicated and

.
‘e

contains many coefficients that are set to zero for particular problems.

P

o
ot

More appropriately, these few non zero entries shouid be computed by
the general purpose machine that controls the entire computation as a part
of the presetting procedure, and then added to the corresponding entries of

H® and b°. In order to ensure the continuity of the flow of data. the ot

addition should take place in an intermediate sub-system residing between

. -~

ORI AN ‘.‘.‘.':.’C\ﬁn\.\&_\‘.\\.\'_\\-.\s.'.-.*.-.1\.':\‘.\‘[-.",-.‘_-.‘:.', .
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the system that generates H® and b®. and the one that assembles the glo-
bal arrays H and b. Conceptuaily. the intermediate sub-system shouild
contain a memory to store the non zero entries of S° and s®° and some
logic to add every non zero entry to the corresponding entry in H® or b
at the time of its generation from the subnetwork N7. As we did in the

last section, we will only consider the stiffness matrices and suggest a pos-

—0

sible implementation for the addition A° = H®+s®. The extension to the

load vector b° should be obvious and simple.

The systolic nature of the subnetworks N1, -+ , N7 enables us to
time exactly the data on the output links 2, q+5° u=0,--+.k-1 (see equa-
tions (8.2)). Each of these links may be directed into a systolic processor
P, 0Su<k-1 that has access to a local memory M,6 as shown in Figure
8.2(a). Each processor Pu contains a register ‘'CURRENT_u’ that it sets to
one at time 6Gu+w+8. and increments every 3k time units. Hence, when an

element H°® 1<t<k-u appears on an input link z,

tttu’ the correspond-

.q+5°
ing register CURRENT_u in Pu should contain the label e of the finite ele-

ment being processed.

1

"I ul .
Fes $es l'-'lgvj : I S: Ve e e e e - S"-“.
4 e o

e A, ,
My o
5 z‘ 1 ~
“pee “iges z.-,,,,‘ INDEX B7_ u
(a) The general architecture (b) The content ot M

Figure 8.2 - The assembly stage
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Each local memory Mu. 0<u<k-1 contains an array INDEX (see Figure
8.2(b)) that has one entry for each finite element e=1,--+-.,m. If the matrix
s° corresponding to the finite element e is zero. then INDEX(e)=0. On the
other hand. if S%#0, then INDEX(e contains a pointer to another array
‘BT_u’ (Boundary Terms for off-diagonal u) where the entries s

t.ttu’
t=1,---.k=-u of the um off-dlagonal of s® are stored (including zeroes) in

the specified order. This order is the same as the one in which the ele-

]
ments H, .., . 1<t<k-u appear on Z,.q+5° -

Thus. at times 6u+w+8+3(e-1k. e=1.---,m. after the processor P, has -

changed the value of CURRENT_u., it consults INDEX(CURRENT_u). If it is a

0\'
zero, then., for the next 3k time units, the data items on the input link %
zu,q+5 are placed unchanged on the output link zu.q+6. Otherwise. Pu

”
retrieves from BT_u the elements Stet +u’ t=1,--+.,k-u, one every three time :j
units. adds each of them to the corresponding H® and puts the result na

t.t+u o
on z e
u.q+6°
An alternative architecture could be obtained by replacing each Mu with ::;
an associative memory that uses the labels 1€e<m as keys to store the

[ Lol

~

array BT_u. or by using only one global memory M instead of the k
memories Mu. u=0,-++,k-1. In all of the above cases. the content of the
memory is computed and preloaded by the host computer. A compietely

different approach would be to perform the matrix addition H°+$‘e on a

systolic network that does not have any memory. However. matrix addition
is a communication-bound rather than a compute-bound operation, and in
our case. most of the data in S® are trivial (zeroes). Consequently, such
a memoryless subnetwork would require many unnecessary data communica-

tion. which we tried to avoid in our design.

> .
-
-'

_XRXA
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8.3. The frontal principle.

The assembly stage in the finite element analysis is an example of a
simple computation that is irregular, and hence. does not lend itself to a
simpie systolic implementation. In Section 8.5, we will show that the
assembly stage may be eliminated from the analysis if an iterative scheme
is used for the solution of the resulting system of equations Hu=b. How-
ever, if a direct solver is to be used., then the global arrays H and b must
be assembled in order to proceed with the direct solution. In what foliows,
we will only consider the assembly of the stiffness matrix H. Although we
will not discuss the assembly of the iload vector b. we note that it may be

included here by considering b as an additional column of H.

At first glance. it would appear that the solution of Hu=b may not start
before the assembly of H is completed. Especially in a parallel system,
this would have two disadvantages. firstly, it does not allow the computation
of the different components of the system to proceed in parallel. and
secondly. it requires some intermediate storage to store H. Since. in prac-
tice. finite eiement probiems with n in the order of several thousands are
not uncommon. it is obvious that auxiliary storage (disks) may be needed

for H., thus slowing down the system even more.

Fortunately, we do not have to wait untii H is completely assemblied
and we may start the solution process as soon as some rows of H are
assempied. The assembly and the solution processes may then proceed in
parallel in a producer/consumer type of interaction: The assembler process
being the producer of the assembied rows of H, and the solution process

being the consumer of these rows.

in order to explain this assembly technique. we denote by 57 the /"

row of the elemental matrix A° and by . the i row of the gioval matrix
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H. We also note that a node with a global number i may share more

than one finite element. and hence. may have more than one liocal iabel.

Each row h,. 1</<n. of the matrix H corresponds to a certain node in
the finite element mesh, namely node /. This row is assembied by accu-

mulating contributions from the rows 5?1]. 717: where e1,°--.er are

the eiements that share node /. and (@1./1),-- - (er.jr) are the correspond-

ing local labels of node /.

In accordance with the system of Chapter 7, we will assume from now

on that during the assembly process the elemental matrices are processed

in the order ﬁ],-'-.ﬁm . and the rows within each elemental matrix are

considered in the order 77:/7: The elements in each row 7:7 are

accumulated in the proper position of the giobai matrix H (see ALG6), or

more precisely in row h, of H, where i=glob(e./).

i

Before going further, we Iintroduce some terminology. During the
assembly process. a row hi Is said to be active from the moment of the

appearance of a row 57

assembly actually starts. On the other hand. h

with glob(e./)=i, that is from the time when its
; s cailed a ready row
immediately after the accumulation of the last row E; with glob (r.)=(, that
is after its assembly has been compieted. In other words. a certain row of
H is partially accumulated In the period between the instance it becomes
active until the instant it becomes ready. Once it has become ready. a

row may be processed by the solver.

These ideas were first formulated in the f{ramework of the so called
frontal technique (24] used in sequential finite element systems. The goal
is to interleave the assembly and the solution phases in order to minimize

the high-speed storage requirements. The order in which the rows of H

R}
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become ready is usually determined by a preprocessing step.

The same basic idea will be used in our system to achieve our goal
of allowing the assembly and the solution processes to be executed in
paraliel. More specifically, whenever a row in H becomes ready, it will be
passed to the solution process. This also allows for the reduction of
storage for the assembly since the storage allocated for a row may be

released whenever this row is passed to the solution process (consumed).

However, in all the known parallel schemes for the direct solution of
Hu=b, the rows of H have to be processed in a sequential order, and
hence. the size of the storage required by the assembly stage is deter-
mined by the maximum number of rows that are at any one time either
active or ready but not yet passed to the solver (consumed) because a
preceding row is not yet ready. For this reason. the global labels given to
the nodes in the finite element mesh should be such that the rows of H
become ready in an almost sequentiai order. By this we mean that there
shouid exist a relatively small constant ¢ such that for any / and j satisfy-
ing 1<i<n and j<itc. row j does not become ready before row i. With
this restriction, we can restore the sequential order by using a buffer large

enough to store up to ¢ rows of H.

If a band storage mode is used for storing the rows of the banded
matrix H, then it is also advantageous to minimize the bandwidth of H. In
this connection, it has to be noted that the bandwidth of H is determined
by the global numbering of the nodes in the corresponding finite element
mesh. In fact, given a global numbering and denoting by 28+1 the
pandwidth of the matrix H resulting from this numbering. it is easy to show

that

8 = maxﬂe -.Le @=1,°++,m) (8.3)
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where 70 and ,Le are the largest and smallest global node numbers in the

finite element e, respectively.

Many heuristic node numbering algorithms were suggested for reducing

the bandwidth (e.g. [13] ). However. if the assembly and the solution

processes are to be executed in parailel, then we need a numbering

scheme that. in addition to reducing the bandwidth, has the goal of reduc-

;._-__Zj ing the number of active rows of H at a given time. and of producing the

. assembled rows of H in an almost sequential order. The following algo- .
a3 ~
i rithm takes these goals into consideration. N
R,
T ALG7 e
1) Assign a unique label e. 1<e<m to each of the m finite elements. ¥
2) Number the nodes sequentially in the following order -
2.1) Number, in arbitrary order. the nodes of element 1.
Y
( 2.2) FOR e=2.---.m DO b |
i::':-'. 2.2.1) Number. in arbitrary order. the nodes in elements e that «
\‘;}. L
S50 are not yet numbered. s
4 ALG7 does not specify the method of labeiing the elements e=1,---.m. ‘*
"'-::Fj It the element labels satisfy the property that for any e. 1Se<m. element e
g X
472 contains at least one node that does not belong to any element 1,---.e-1. -3
N
o
then we call such a labeling scheme a proper element labeling. For -
T
Ao exampie, the element labeling in Figure 8.3(a) does satisfy the above condi-
:I",::: tions, and hence is a proper labeling. On the other hand. the iabeling for o
LA
P, —ha
- the same mesh in Figure 8.3(b) is not proper because element 10 does not
;Z‘,:.‘ contain any node which is not in the eiements 1.---:.9. With this defini- Q;:}
-Z::;L; tion, we can prove the following proposition: )
T A ‘
®. Proposition 8.1: If the nodes of the finite element mesh are numbered using ad
0J4" '
"Z-'.j'. ALG7 and the labeling in step 1 is a proper element labeling. then for any ~,
LY e

A
‘

I

~

(X A
..w T

P
".'-s.
-.-




G
©e o |6

; e //%@
o] ©

(a) A proper labeling (b) A non proper labeling
N Figure 8.3 - Elements labeling.

e, 1<e<m. the elements e.-+-.m dO not contain a node with a global

number smaller than 79 - 8, where 79

is the largest node number in ele-
3: ment €., and 2B8+1 is the bandwidth of the matrix resulting from this partic-

ular node numbering.

D‘ Proof: ALG7 and the proper element labeling imply that for any r>e. the
T finite element r should contain a node with a label /" > 7°. However, from
v equation (8.3) we find that /' - [ < B8 or L/ > /-8 > 71°-8. Hence,

because the label of any node in element r is targer than _Lr we conclude

that the elements e+1.---.m do not contain a node with a giobal label

smaller than or equal to 7°-8. Now. the resuit of the proposition follows

=,

:7‘ from the fact that any node in element e has a label larger than or equal

f\ ol =7-8 =
in our system, we will assume that the global node numbering scheme
- :;:: satisfies the conditions stated in Proposition 8.1, and that the finite elements
.:;' are processed in the order 1.,--+-.m. Then, the proposition guarantees tha!
o .-

during the assembly of the contributions of an elemental matrix f;e into the

M N |
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global matrix H, the rows 1,- °-,7°—B-1 of H are completely assembied and

will not be modified by any contribution from the elemental arrays Fl'r. rle.

In other words. if row /i, 1</<n in H is active, then the rows up to i-
(B+1) are ready and may be processed by the solver and thus the storage

associated with them may be released.

Definition: if. at a specific time during the assembly of H. a certain row /.

1<i<n is active. then the rows 1.---.i-(B+1) are cailed B_ready rows of H.

From Proposition 8.1, it follows that B_ready rows are ready rows of H.
However. a given row may be ready before it becomes B_ready. Being
pessimistic. we will follow the rule of not allowing the solution process to
access a certain row in H obefore that row becomes B_ready. except of
course for the last rows n-8.---.n that may be accessed only after the
assembly of H is completed. This may decrease somewhat the efficiency.
but it has the advantage of eliminating the preprocessing stage that would
otherwise be required for determining the time at which a certain row in H

becomes ready.

it the above rule is used as the basis for the interaction between the
assembler and the solution processes. then, the assembler process should
contain storage for hoiding at least B+1 active rows of H. Moreover., as in
the case of any producer/consumer problem, additional buffers may be
required depending on the relative speeds of production of the B_ready

rows and their consumption.

It is not hard to see that. due to the nature of the assembly process.
the rate at which the rows of H become B_ready is not constant. Hence
we will consider the average of that rate. This average rate differs from

one problem to the other. In order to be more specific, we first note that

the inputs to the assembly stage are the mk rows E‘l’ j=1,- .k,
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e=1.--.m. and that the outputs from that stage are the n rows h,.
i=1,---.n. We also assume that the execution time of the assembly pro-

cess is Ta time units and that its data bandwidths are sufficient to transmit

the input of one row 717 as well as the output one B_ready row at a time.

. ' L;.' With this, we suppose that the rate of arrival of the rows at the assembly
SUCT stage is constant, and we denote this rate by r;= '-;.7—" rows/time unit. We
AN a

_-\.';‘-‘. j\v also define the average rate at which the assembly stage produces the
b

-_n _ n n

\ - B_ready rows of H as o T; mk 7;- Since the ratio —% changes from
\.':' .::.

: & e one problem to another, it should be clear that., for a fixed input rate. the
)‘\.'\ R

:‘_r, average rate, at which the rows of H become B_ready. does depend on the

problem at hand.

Hence. in general, we cannot achieve the desired match between the
average rate of production of the B_ready rows and the rate at which the

solution process is ready to consume these rows. More specifically, if the

:'.:‘ solution process is capable of processing (consuming) rc rows of H every
~Z:§Z: ” time unit, then we have one of the following possibilities:

B

_:.:'__:; “:' 1)) rc <'-p' that is the solver cannot consume the B_ready rows of H
::' fast enough. In this case, the number of B_ready but unconsumed
C -

\'\j - rows grows continuously and so does the size of the memory require—
, r ment of the assembler process.

\ N 2) rc>r_p. in which case the assembly stage needs only to provide
NP

storage for B+1+K, rows of H, where K

b , is the size of the storage
needed to buffer the fluctuations in the production rate of the

B_ready rows of H.

From the above discussion, it is clear that to Ilimit the size of the

storage required in the assembly process. we need to guarantee that rc >r—p.
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This. however. will force the solution process to execute at a speed slower
than its nominal speed r.- because often it willi be forced to stop execution
and wait for the B_ready rows of H to become available. As a result. the
synchronization between the solution and the assembly processes can no
longer be controlled by a giobal clock. Instead. a shake hand protocol

should be used for that purpose (see Section 5.5).

Assuming that rc>7p, we may control the size of the additional buffer
Kb by controlling the fluctuation in the rate r_p of production of the
B_ready rows. More specifically, if we can guarantee that, at any time t
during the assembly process. the rate rp (t) of production of the B_ready
rows, is smailler than or equal to the consumption rate rc. then, any row of

H will be consumed as soon as it becomes B_ready. thus reducing the

size of the additionai buffer Kb to zero.

Here., we note that the rate rc is uniquely specified by the solution
process, and hence that the relation between rs and rp(t) cannot be
obtained by studying solely the assembly process. However. by specifying in
ALG7. a certaln order for numbering the nodes within each element, rather
than keeping this order arbitrary, we can prove that rp (t) may not . at any
time t. exceed the constant rate ri of arrival of the rows at the assembly
stage. This result will be used in Section 9.1. We start by modifying

ALG7 to obtain the following node numbering algorithm.

ALGS
Given a proper element labeling for the finite elements and a
corresponding local numbering of the nodes. obtain the global numbering
by giving the nodes sequential numbers {=1.---.n in the following
order:

» FOR j=1.--:-.k DO
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glob (1./)=/
2 FOR e=2,:---.m DO
FOR /=1,-++.k DO
IF node (e./) is already numbered THEN skip

ELSE increase j by one and set glob(e.i)=j.

Now, we can prove the following resuit:

Proposition 8.2. Let the nodes in the finite element mesh be numbered by

algorithm ALG8 and let the elemental arrays be accumulated in the global

array in the order ﬁ],- < T with the rows within each A° being accumu-

-

lated in the order ﬁ?."‘,hk. Then, the rows of H become active in a

purely sequential order.

Proof: Consider any two rows h,1 and hi2 of H with i1</2, and iet (e1.j 1)
be the local label for node i1 such that glob(e1.j1)=i1, and that we have
el1'>e1 for any other local label (@1°.j1') with giob(e1'./1)=i1. In other
words, element el is the first element containing node /1. Similarly. let
(€2.j2) be the local label of i2 with respect to the first element containing

it From the definition of active rows, we know that the rows h and h’.

i 2

of H become active when rows 57.: and 5722

bler. respectively. However, ALG8 and the fact that i1<i2 . together imply

are received by the assem-

that either e1<e2 or el=e2 and j1<j2. In both cases, we conclude from

1

1 is received by the assembier

the hypothesis of the proposition that ﬁ"’
before 5722 and hence that row /1 becomes active before row i2. B
Proposition 8.3: Assume that the hypotheses of Proposition 8.2 apply. and.

moreover. that the rate r, at which the rows I-rle i=l,+ .k, @=1,+-.m,

arrive at the assembly stage is constant. Then the rate of production of the

B_ready rows rp (t) at any time t, cannot exceed ri rows/time unit.




Proof: Note here that the arrival of a certain row ﬁf . 1Ki<k, 1Se€m. at

the assembler may at most activate one row of H., namely the row labeled

. —0
= (e./). . .
/=glob (e .i) Hence. after the arrival of h, the rows h]. ’hi+B+1 are,

by definition. B_ready rows. However, from Proposition 8.2, we know that

row h,._1 should already be active at the instant when row hi becomes

active. That is, before the arrival of F,e . rows hl'”"hi +g were B_ready.

in other words, the arrival of 777 may create at most one B_ready row.

namely row h ]

jt8+1°

We now return to algorithms ALG7 and ALGS8. Although these algo- '
rithms provide good numbering schemes from the point of view of process- ‘T
ing the assembly and solution processes in parallel, we still have to ensure -
that they do not result in a large value of B. For this we note that ALG7 o
and ALG8 are two-step algorithms:. First, the finite elements e=1,---.m are ;i
labeled, and then the nodes within the elements are numbered. To our
knowledge. Fenves and Law [15] were the first to suggest a two-step ’
numbering algorithm. They reported experimental results which show that if a
the Cuthill-McKee (13] algorithm is used to number the finite elements with i
a two step algorithm. then the bandwidth of the resulting matrix H is com- o
parable with the one resulting from the best known heuristic algorithm for
minimizing the bandwidth. Here. in the application of the Cuthill-McKee :‘.
aigornithm for labeling the elements, Fenves and Law consider two elements
to be neighbars if they share a common boundary. __

Clearly, the hypothesis in Proposition 8.1. requiring the element labeling
scheme in ALG7 to be proper, is essential. In order to see this. consider
the simple example of Figure 8.4(a) where the element labeling is not 5_“
proper (element 3 does not contain a node not in elements 1 or 2. B

[N
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Using ALG7 to label the nodes as in the figure, it is easy to see that the

result of Proposition 8.1 does not hoid because element 3 contains nodes

with global numbers less than 72-B=8-3=5. namely nodes 3 and 4.
47 29
19 I3t @ "% 5 16
‘ﬂ_‘

—__ 257 ®|® ©

5 bt s 7

-

(a) B=3 (b) B=8
Figure 8.4 - Application of ALG7 for node numbering.

According to the results in [15], we may obtain a relatively small
bandwidth with a two step node numbering algorithm if we use the Cuthill-
McKee scheme to number the elements. However., we note that this may
result in a non proper element labeling scheme. For example. the ele-
ments in Figure 8.3(b) were labeled using the Cuthill-McKee algorithm but
the resulting labeling is not proper (because of element 10). The

corresponding node numbering is shown in Figure 8.4(b). where the largest
node number in element 9 is 79=20, but eiement 10 contains a node with a

number smaller than 79-B=12. namely node 9. In this case, however, a
proper element labeling may be obtained by starting the Cuthill-McKee aigo-
rithm from a different element (see e.g. Figure 8.3(a)). We examined many
strange shapes of meshes and in only rare cases did the application of the
Cuthili-McKee algorithm resuit in a non proper labeling. Moreover, in all

these rare cases a proper labeling was easily obtained by changing the

starting element. The existence and construction of a proper eiement
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labeling scheme for a given finite element mesh is still a question that

needs to be answered.

Finally, we note that. by allowing the solution process to access the
rows of H only when they become B_ready. we do not increase the storage
requirement of the assembly process. As an implication of Propositions 8.1
and 8.3, this storage should be large enough to hoild B+1 rows of H.
However. this is the minimum amount of storage that should be provided by

the assembler even if the rows of H were accessed as soon as they

become ready. In fact, there ailways exist an element e such that 7°-_L°=B.
and hence the assembly of this element does require the storage of 8+1
rows of H, assuming of course, that the rows of H are stored in consecu-

tive locations.

8.4. A parallel implementation of the assembly process.

The discussion of the last section showed that the potential paralielism
between the assembly and the solution processes may be paralyzed if the
solution process is designed to access the rows of the assembled matrix H
in order and the node numbering scheme does not take this into con-
sideration. Here, we prevent this from happening by assuming that the

node numbers satisty the conditions of Propositions 8.1 and 8.3.

Next. we modify the definitions of A, and h  such that AT =

H; i

=i, +-.,k) and hi = (H”;i=i,---,i+B) are the sets of elements of
th =9

interest in the / rows of the symmetric matrices H and H. respectively.

in addition. we denote by Lf = ((glob le.i).glob(e.j): j=i.+++.k) the set

that contains the information about the position at which each element of

-
i

h is to be assembied into the giobal matrix H. With this, we may

Ll e Pl i Al o I A R R D
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IR
NN
ot describe the assemblier process as follows
N
T
l ! PROCESS ‘ASSEMBLER'
w&{p Max_ready := 0 : Consumed = 0 ; HO := 0 ;

v b
;{ N Interrupt I: /* High priority =/

o 1 Get ﬁ,‘ and LIo from I_port ;

) A
:.\‘u L
O 2) Accumulate the elements of 519 in HO
RS e
r .
% : 3) IF (Max_ready < glob(e.D-B-1) THEN Max_ready := glob(e.)-B-1 ;
R 4) EXIT from the interrupt.
5
P interrupt O: /* Low priority */
o
* D WAIT until (Max_ready > Consumed) OR (D_flag is set)
')::J 0_1‘
:_’-.j w2 2) Send h,. ¢ := Consumed to O_port :
S8 B
; 3) IF (Consumed = n) THEN STOP the ASSEMBLER process :
y 8"
(- 'j 4) Consumed := Consumed + 1
R 5 EXIT from the interrupt.
CoT Here. the following notes are in order:
' L' a) The interrupt | takes place when a new input arrives at I_port. The
ST
e data bandwidth of |_port is assumed to be large enough to input the sets
N .
N A, and L. 1<e<m. 1<i<k.
e Q b) The interrupt O has a lower priority than the interrupt | and it takes
.;;-L‘_j ’ place when O_port is ready to receive the next output. The data bandwidth
e of O_port Is assumed to be large enough to output a set h,. 1<i<n.

c) The flag D_tlag is set externally when the input of all the elementali

matrices is completed.

It is straightforward to verify. on the basis of Proposition 8.1. that the
above process will output the rows of H to O_port only when they are

completely assembled. if. moreover, the solution process is able to

_~'_-- R T A N N P P N A A U A LAV N I CR T 4'.".'. I -'. Lt KU TR IR . A
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consume the rows of H at a rate faster than they can be provided at
O_port. then we do not need to provide storage for the n rows of H, and
it will be enough to provide a circular buffer to store B+1+Kb rows of H.

where the need for the additional buffer Kb was discussed in Section 8.3.

The process °‘ASSEMBLER’ is assumed to handle a large amount of
data at a high rate due to the large Input and output data bandwidths.
Consequently, we may need more than one processor 1o execute this pro-
cess. Fortunately. the °‘ASSEMBLER’ may be easily decomposed into a
number of parallel sub-processes. each responsible for managing the data

on one or more off-diagonails of the matrix H.

-
k‘ ) (al,.A\., k,e-l‘,.l,.,

,
.- D
l'mu Jz.-,pt I 5§06

Conmunicabion Vebwerk

T port, L porty | 2- pocts
b/m, - - - f/n, - - - l’lMo
1 0-port, Lo-peets, -~ Jo-peta

—
”4,‘,«) , 5, miw

Figure 8.5 - A parallel architecture for the assembler

Consider. for example, the extreme case where we have B+l sub-
processes ‘ASSEMBLER_w'. w=0.---.8 running on B+l processor/memory
units (see Figure 8.5). Here 'ASSEMBLER_w’' manages the assembly of the

w'" oft-diagonal of H. The communication network in Figure 8.5 distributes

the elements of E‘,’ such that each element H‘,’ ; 1s sent to the P/M unit

responsible for its accumulation. More precisely, the communication network

receives with each element Fffl, the giobal/iocai map information v=glob (e.i)
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and w=ABS (glob (e.i)-glob (e./)), (ABS= absolute value), which specifies that

Fl,el Is to be accumulated in the w‘h off~diagonal position of row v of H.

With the value of w, the network then sends both ﬁf / and v to P/Mw

which completes the accumulation.
One difficulty arises from this decomposition of '‘ASSEMBLER’. namely

that upon receipt of a certain row 57 the entries of this row will be distri-

buted on the few P/M's that are responsible for their accumulation. Hence.

only these few P/M’'s will detect the arrival of ﬁ,e and update accordingly
their copy of the variable ‘Max_ready’. The copies of Max_ready in the
other P/M’s wiil not be updated uniess we provide for some sort of inter—

process communication. Since P/M0 receives the diagonal element of every

row 7)7 arriving at the assembler, it seems natural to have only P/M0
update Iits value of Max_ready, and then send a message to the other
P/M’'s with the new value of Max_ready. whenever it is updated. This mes-—
sage may be broadcast to the other processors or passed from one pro-

cessor to the next (a daisy chain). With this observation, we may describe
the process in any processor/memory unit P/Mw as follows
Sub-process ASSEMBLER_w :

Max_ready := 0 . Consumed := 0 ; diag_w(O = 0 ;.

Interrupt 1 /* High priority */

1 Get Fffl and v=glob(e.i> from I_port, :

2) diag_w(v) = diag_w(v) + Hf'l ;
3) FOR P/M0 ONLY : IF (Max_ready < v-8-1) THEN
3.1) Max_ready := v-B-1
3.2) Send messages to the other P/M’s with the new value of

Max_ready .
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4) EXIT from the interrupt :

Interrupt O: /* Low priority */
1) WAIT untit (Max_ready > Consume) OR (D_flag is set
2) Send diag_w(Consumed) to O_portw
3) IF (Consumed = n) then STOP the ASSEMBLER_w process.
4) Consumed := Consumed + 1

5) EXIT the Interrupt :

interrupt M: /* High priority */
Update the local copy of Max_ready as received from P/Mo.

here the high priority interrupt M takes place only in P/M,.---.P/Mg when

1
a message is received from P/Mo. Similar to the process ASSEMBLER. the

linear array diag_wO may be replaced by a circular buffer of length

B+1+K,. Note that the message-passing communication technique may be

repiaced by a global shared variable. or Dy letting every P/M receive an !

indication that a row '-,‘e has been received. -2

Finally, we note that the communication network of Figure 8.5 may be

implemented as a binary tree network [22] where the nodes at consecutive to
levels use the corresponding bits of the address w to send Fllel and v to ~
. .:‘

either its left or right successor node. with l_portw, w=0,--+.8 placed at
S
the leaves of the tree. We do not intend to discuss here the communica- :f:
tion network in any details. .

8.5. Elimination of the assembly stage.

<
To our knowledge. Belytschko and al. (3] were the first to notice that
the muitiplication of the global matrix H by a vector p can be completed
i

without assembling H. More precisely, from equation (6.8) we have
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where p® = M® p is a k-dimensional vector containing those entries in p
that correspond to the nodes belonging to the finite element e. that is.

p° ) = p(globte./. for j=.1-- - k.

The following aigorithm describes precisely the use of the unassembled

matrices A°. e=1.-:-.m in the computation of the product vector

y =x + H p., where x and p are given n-dimensional vectors.
ALG9
Y FOR i=1,---.n DO
1. y = x
2 FOR e=1.---.m DO
2.1 form the vector pe from
p% () = p(giobe.i» i=1.+ 0k
2.2 Obtain the k-dimensional vector product

P o= 7 p°

2.3) Accumulate ye into y according to

y(globte./» = y(globe.in + y () j=1.c 0k
The above algorithm is very useful if an iterative solver is to be used
for solving the linear system of eguations H u = b resuiting from the finite
element approximation. In fact., as noted before. most iterative soivers
invoive the matrix H oniy for the computation of its product with some given
vectors and this can be done without assembling the gtobal matrix M.

Clearly, ALGY9 Iis especially suitable for our systolic system where the gen-

eration of the matrices H° is pipelined for e=1.-+-.m. and hence allows
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aiso for pipelinig the formation of the partial products L.

it is widely accepted in parallel processing that one may replicate some
parts of the computation or apply an algorithm that may not be efficient for
sequential processing. provided that the gain obtained from parallelism justi-
ties the added cost. This may be the case in the computation of the pro-
duct vector y = Hp. where the direct computation does require less work
than the application of ALG9. Also it seems obvious that the amount of

storage required to store the matrix H is less than that required for storing

all of the elemental matrices H°. e=1.-+-.m. In order to justify the appli-
cation of ALG9, we will compare the storage requirement for storing H with
that of storing all the H®. e=1....m. and the work required to compute Hp

directly rather than by ALGSY.

p
als
¢
m'-l
b
! a) k=4 o) k=8
L] L 4 [ 4 L}
[ 4 [ L 4
& L4 - @
‘ . A o
'
[} 2 - s e - PUPYEE c) k=9 d) k=16
A 4
Figure 8.6 - A uniform finite Figure 8.7 - Some quadrilateral
element mesh. element types

As a basis for the comparison. we consider the matrix H corresponding
to a uniform finite element mesh over a rectangular domain (see Figure
8.6). The number of elements in the horizontal and vertical directions is

assumed to be m, and m . respectively. Hence the total number of
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elements is m = m, m,. We shail consider four different types of quadri-

lateral elements (see Figure 8.7). namely: a) four node bilinear elements. b)
eight node serendipity eiements. c) nine node lagrangian elements, and d)
sixteen node lagrangian elements. it is easy to check that the total number
of nodes n in the finite element mesh for the four types is a)(mhﬂ)(mvﬂ).
b)(2mh+1)(2mv+1)-mhmv, c)(2mh+'l)(2mv+l) and d)(3mh+1)(3mv+1). respec-

tively.

it should be noted here that H is a banded sparse matrix. and hence
that the cheapest way of storing it and operating on its non zero elements
Is to use a sparse storage mode [18], where the non zero elements of
each row of H are stored in consecutive locations in a linear array ELEM.
If N is the number of non 2zero entries in H., then the length of ELEM
should be at least equal to N. In addition, two further integer arrays are
needed; the first has at least N elements to store the column number of
the corresponding entries in ELEM, and the second contains n pointers to
ELEM. These pointers specify the position in ELEM of the first element in
each of the n rows of H. Hence the minimum storage requirement for H

is

S]=(cr+ct)N+ctn

where Cr and Ct are the cost of storing a real number and an integer.

respectively.

On the other hand. each elemental kxk matrix H° has to be accom-
panied by an integer vector to indicate the global label of each local node
(e.i), i=1.--+,k. Hence. the total storage for the unassembled matrices is

_ 2
82-mk cr+mkct

Assuming that the cost of storing a real number is doubie the cost of
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storing an integer., we obtain the ratio

sl . 3N +n
T —
s2 2mk~ + mk

In order to compare the computational cost for the direct product Hp

and ALGY9. we assume that the costs of a multiplication and an addition are

L and Wy respectively. For the direct product. we include the number of
operations required to assembie the matrix H (mk? additions), and hence
obtain
W, = (w +w)N+mk2w.
1 m a a
For ALGY, this cost is
W, =w_ +w)m&k>+mb&kw
2 m a a
Neglecting the second terms in W1 and W,. we obtain the pessimistic ratio '
AR =
w2 mk2 =
in Figure 8.8. we assume that m, and m_ are much larger than one, E“:
and list the estimated formulas for m, n and N as well as the ratios 81/82 .
and W]/W2 for the four types of elements of Figure 8.7. and the matrix H .:-T
corresponding to the finite element mesh of Figure 8.6. ~
it
Element type | k m n N §,7/5, | W /W, ‘
a 4 |mm |mm |9 mm |0777 | 0.562
b 8 |mm (3 mm |47 mm, 1.069 | 0.734 .
c 9 m,m_ 4 m,m, 64 m,m 1.146 0.790 _
d 16 m,m_ 9 m,m, 225 m,m, 1.295 0.849

Figure 8.8 - Comparison of ALG9 with direct muitiplication
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The value of the ratio S]/Sz indicates that for elements of order
higher than the four-node type. the overhead associated with the sparse
storage of H makes it cheaper to store the unassembled matrices Ae.
e=1.---.m. It also turns out that any banded or profile scheme for storing
H will require more storage than the sparse scheme assumed here. On
the other hand. the cost of executing ALG9 is always higher than that for

the direct multiplication of H and p. However, the ratio W,/W, indicates

2
that the additional work in ALG9 is relatively smali, especially for higher
order element types. This suggests that we may be willing to pay this

price in return for the speed-up and the elimination of memory fetch gained

from our pipelined systolic system of the following chapter.
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9. POSSIBLE CONFIGURATIONS OF A COMPLETE FINITE ELEMENT SYSTEM.

Our primary goal in this chapter will be to show that the
pipelined/systolic approach may be applied to the design of a complete fin-
ite element system. We do not intend to specify the details of an ultimate
system nor to compare different possible designs. Instead. we wili identify
the basic functional units in a complete system and then refer to possible

implementations for these units, with the emphasis on the interface and

interaction between them.

By its very nature. any systolic or pipeline network needs to be moni~-
tored by a host computer. In our system, the host is assumed to be a
general purpose computer that contains the data base for the problem to
be soived. it constitutes also the only means of communication between the
user and the system. through which the user specifies or updates the infor-
mation about the finite element mesh and the partial differential equation
and in turn obtains the results of the analysis. The host resembies the
heart of our systolic finite element system. It is responsible for setting.
initiating and feeding the systolic pipe with the appropriate data as well as

for coliecting the output data and performing some additionai tasks that we

will giscuss later.

A Dbasic functional unit that should be included in any pipelined finite
element system is a unit for the generation of the elemental arrays. Mits
tasks may be identified as follows: a) generate the arrays H® ana b° for
the elements e=1,---.m, b) update H® and b® for some elements to force
the solution to be equal to zero at some portions of the boundary. ¢) add

the effect of the essential boundary conditions to H® and b°. and @
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e
associate with each entry of H® and b ine position at which this entry is

to be accumulated in the giobal arrays H and b.

HOST
i . | oata > N1 Ve[ Vil ¥, Ve
‘ Base L3 XY
LM » ¥5
=z
Juj‘:l

Figure 9.1 - The generation of the elemental arrays

The above tasks may be executed using the systolic networks described
in Chapters 7 and 8. In fact. task (a) may be executed on the networks
N1--+-N6 of Chapter 7. tasks (b) and (d) on the network N7 of Séction 8.1
and task (c) on the network described in Section 8.2 (call it N8). These
networks were designed such that when connected as a pipeline (see Figure

9.1). the output of each sub-network is the input to the next one.

Before initiating the operation of the system, the host should compute
the line integrals that account for the essential boundary conditions and
load them into the local memories for N8. It should load aiso the quantities
V?(g). A:(g) and Aiz(g), i=1,-+-,k., g=1,---,q into the tocal memory LM.
Then., the host initiates the operation and pumps the input data for the gif-

ferent finite elements through the system along the proper input links. The

form of the inputs may be described by:

_ A L
¢ =07 PN ]m<53 6° £ i=1.2 9.1.2)
_q+3k+9 3K 3
To.qe1 = 1 Pe=1.m¢ Py ) (9.1.0)
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Pg.qey = AT B (Pl @D ) ©9.1.0)
Pak+9.q+1 = n? 9k P2k=]‘m( e? E’{ ) 0.1.
%0.9+4 ~ n *ok*16 P:';1,m‘ 6%+% 9.1.0
Moqea = 07 TOKTI8 RO (6%0D) ©.1.9)

3

Here, the operator P

e’-‘-‘l m Indicates that the data for the different finite

elements are pipelined with a pipe separation of 3k. and the sequences with
superscript e contain the relevant Information about the finite element e.
For the precise definition of these sequences we refer to the corresponding
sections of Chapters 7 and 8. However. we may describe informaily the
content of these sequences as foilows:

x ef, i=1,2 contains the coordinates of the nodes in element e (2k

data items),

x al.e. /=0,1.2 contains the coefficients af r.1=0,1.2 of the bilinear

,
form in element e (9 data items).

* 59 contains a single data item. the load 1.

* 'ye contains the k giobal labels of the nodes in e (k data items).
and finaily

* 73 contains k daia items that specify the nodes at which the solu-

tion must be zero.

Hence. if there are input buffers, the host shouid supply the systolic
pipe with 4k+10 data items every 3k time units. This is a relatively low rate
which can be achieved even by a microcomputer. With the help of the
abstract systolic model. we were able to prove that if the input to the sys-
tolic pipe is as given by (9.1), then the system will produce the eiemental
and b

arrays on the output links z, u=0,---.k of N8B according

qt6 u.gt6’

to the formulas

_J' 3’.‘_(."'.-'_'.‘_'-.\
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- ~q+6u+3k+18 _3k 2 —9

Cuqgee = 9 Poz=1.m© &, ©.2.2)
_ qt6u+3k+18 _3k 110, 2.0 2 =

Byq+6 = 0 Po=1.m( My ©°A] . n0°X% | 8% ) 9.2.0)

TO_," -9 e -e
where X,=0 . T@p= TOP= k, T@)= T(ij): r(xz)= k-u for u=0,-- - k-1,

and

b

Ht.H»u u=0,-+ k-1
—e =
u.u(t) =

=€ =

bt us
e
xu = glob(e.t) u=0,-+-k
—e
xu = giob(e.t+u) - glob (e.t) u=0,---.%-1

=0

In other words. ‘_‘3 contains the elements of H 3°

and 56 and xe. A~ con-
u u
tain the addresses where these elements are to be accumulated in the glo-

bal arrays H and b.

As noted earlier. in order to integrate the system of Figure 9.1 into a
compiete finite element system., we must distinguish between two types of
systems according to the method used for solving the resulting linear sys-

tem of equations
H u =0»b 9.3

These are either systems that employ direct solvers for the solution of (8.3),
or systems that use an iterative scheme for completing the analysis. We

will consider the systems with the different types of solvers separately.

9.1. Systems that empioy direct solvers.

in Figure 9.2, we show a block diagram of a compiete system that

uses an LU decomposition for solving (9.3). it consists of the host and

T
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N

;;i:: four functional units. The unit labeled GEN is the generator of the elemen-
:'.:‘"‘ tal arrays as described earlier in some detail. The output of GEN
ﬁ (described by equations (9.2)) is then directed into the unit labeled ASSEMB.
.«-:E Its function is to assemble the global arrays H and b. The third unit,
\: FACT. receives H and b from ASSEMB and simultaneously performs the LU

factorization and produces the solution y of Ly=b.

2 -8

cev |

Datr Base J _L

ASSEMB

T
r Fﬂ.c 7 l

-
] | eﬂlck ]

TEMP

Figure 9.2 - A block diagram of a system with a direct soiver

Because of the high rate at which ASSEMB receives its inputs and
hence produces the elements of H and b, FACT shouid have enough com-
puting power to process the data at such a rate. This power may be
obtained from a very high speed array processor that may become available

in the future as a result of advances in VLSI and optical ‘'communication

technologies. However, with the current technology. the most suitable can-

didates for the implementation of FACT are systolic arrays.

Assume that ASSEMB is implemented as B+1 processor/memory units as ,{-_f

described in Section 8.4, Hence. each unit P/Mw, 0<w<8. will produce at
th

reo

its output port O_.oortw the elements of the w off-diagonai of the assem-

bled matrix H. in order. We may also use an additional processor/memory

2t
]
ote

unit P/M to assemble the globai load vector and produce its elements

8+

at the correspondin ort O_port .
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It had already been noticed in Section 8.3. that there Is no uniformity
in the rate at which ASSEMB produces the assembled rows of H. For any
time t. this rate was denoted by rp ). In order to obtain an upper bound
on r, (). we assume that the nodes of the finite element mesh are num-
bered by means of algorithm ALGS8. Note that the km input rows of ASSEMB
are generated by GEN at a uniform rate of one row every three time units,
that Is, according to the terminology of Section 8.3, we have ri%. Then.
by Proposition 8.3. rp (t) cannot, at any time t. exceed r- in other words,
we have rp(t) <= % which means that the average rate r—p cannot
exceed % A more precise estimate of 7; is obtained by noting that

ASSEMB receives km input rows at a uniform rate r’.=% and produces n

~
1

output rows at an average rate r.. Hence. r. < 3

= N

p p 3km

With this implementation of ASSEMB, The systolic network of Section 4.3
may be used to implement the functional unit FACT. From now on, we will
refer to this network as Sys_FACT. If synchronized by a global clock,
Sys-FACT expects to receive its input (the n rows of H) at the rate of one
row every three time units. that is the rate I ‘= —;— row/time unit. As men-
tioned earlier, with rc>§. ASSEMB will not be able to supply Sys-FACT
with its inputs on time, and hence. we are forced to impiement Sys-FACT
as a self timed systolic network rather than as a network synchronized by a
global clock. More precisely, if an input ceil Cw of Sys-FACT is connected
to the processor/memory unit P/Mw in ASSEMB and is expected to receive

from it the elements of the wth

off-diagonal of H. then. whenever Cw is
ready to accept the next input item, it sets the O_interrupt in P/Mw and
holds its operation until P/Mw puts the required item on the output port

O_port. For further details on the principie of operation of self timed sys-

tolic networks., we refer to the discussion in Section 5.5.
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In order to estimate the storage requirement in ASSEMB. we note again
that rc=-;- and use the result that rp(t)<% to concilude that the rows of H
will be consumed by Sys_FACT as soon as they are produced by ASSEMB
(beqome B_ready). Hence., the only storage needed in ASSEMB is for the
B+: active. but not B_ready. rows of H that are being assembled at any
one time.

The seif timing synchronization of Sys_FACT makes it impossible to
predict the time at which every element of the upper trilangular matrix U
and the partial solution vector y (Ly=b) will be produced on the output links
of Sys_FACT. However. we know that Sys_FACT does generate the elements
in the last row of U (and y) one time unit after it receives the correspond-
ing eilements in the last row of H (and D). Also the last B rows of H,
namely hn-B"""'n‘ are made available to Sys_FACT just after ASSEMB
receives its last input at time 3km+9k+q+16. Since Sys_-FACT is able to
consume these B rows in 3B time units, we may conciude that the factori-
zation and partial solution will be completed at time 3km+9k+38B+q+17=

3tkm +8).

Finally, we discuss the last functional unit in Figure 9.1. This unit,
BACK. performs the last step in the analysis. namely the soiution of the tri-
angular system Uu=y by back substitution. Although its task is simple,
BACK cannot start its computation before the last row of L and the last
element of y are available. Hence a temporary storage (TEMP in Figure
9.2) must be provided for storing these elements upon their generation from

Sys_FACT until all the element of L and y are generated.

The systolic network for back substitutions described in [(31] may be
used for BACK. However. we may also use Sys_FACT to perform the back

substitution as described in Section 4.3. Aithough this may be very ineffi-
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S
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e anin)

cient, it eliminates the need for any separate hardware for BACK. provided

»
.
PR

that the entire system will not be used to pipeline the computations for

R e

[ ¢
v

more than one finite element problem. In any case, the back substitution

E. a will not require more than 3n time units, and hence the entire analysis will
:; s be completed in approximately 3(n+km+B) time units, which is a consider-
- l— able speed up over the time for serially executing the O(n2) operations
E\ estimated in (9). No comparison can be made with the paraliel finite ele-
F_ “E ment machine of ICASE [29) because the latter cannot use direct solution

schemes.

The system described above profits from all apparent concurrencies in

- the finite element analysis. However, it has a serious disadvantage. namely

- the architectures of its units ASSEMB and FACT depend on the bandwidth B
v of the matrix H., which varies from problem to problem. This disadvantage
‘ is shared with most of the known systolic networks that operate on banded
D matrices [31,7.34]. In order to be able to use a system designed for a
certain bandwidth 8 on a problem with a larger bandwidth 8°'>8., we should
be able to p'artltion the computation appropriately to allow its execution on
L the existing hardware. ASSEMB can easily accommodate a partioning in
) which each P/Mw performs the computation associated with more than one
off-diagonal of H. However, the compiex communication pattern of
S Sys_FACT makes its partioning non-trivial. More research is needed on
E'.: ‘;.-: Sys_FACT or aiternate architectures for the direct solution of (9.3) if we
:._J desire to have a system that is independent of the bandwidth B. Pipelined
E.,: . finite element systems that employ iterative soiution schemes do not appear
e to share this particular disadvantage.
<A
L'J o Remark:

The validity of r_‘o<rc was based on the assumption that the degree of
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. freedom d per node is one (see Remark 1 in Chapter 6). This relation
-

o may change if d is larger than unity. In order to be more specific. we
.
G assume that Remark 3 in Chapter 7 is applied so that GEN generates the
S
:Z-::f d2 elements of each entry in A° simultaneously. We also assume that
’-.' ASSEMB is capable of assembling these elements as soon as they are
S received. and hence that the execution time of the assembly stage remains
‘_ equal to 3km time units. In this case. the nd rows of the global matrix H
R are produced by the assembier at the rate r-p = 3% rows/time unit. On
‘ .
o the other hand. the rate at which Sys-FACT can consume the B_ready rows
N _
t:}:' 1 rp nd
\ remains r, = 3 and hence the ratio o = &m is larger than one except
: for small values of d (see e.g. Figure 8.8). This causes the storage
f‘:j . requirement for the assembly process to increase without restrictions.
- In order to limit the size of the storage requirement. we have to slow
down the rate at which the elemental arrays are generated. This is possibie
Ao
o by using one of the following two techniques:
v
. 1) A modification of the control parameters in GEN as described in Remark
)
.:-:.- 2 of Chapter 7. Now, each elemental array is generated in ck time units
'.:::- r—p .';‘
e rather than 3k time units, where ¢ may be chosen such that = = o
o c
g 3nd -
N ckm < 2
ooy
-5‘; 2) The use of a self timed technique for the synchronization of the systolic
::j::-{ system GEN. With this, a fixed storage may be used in ASSEMB and _‘;_
‘.__?5 whenever this storage is fully utilized, ASSEMB stops consuming the output -
N
-3 of GEN. thus forcing it to a temporary halt untii Sys—-FACT consumes some -~
LRSS
<N
‘o of the rows in ASSEMB. This alternative is preferred as it adjusts the rate
,. .: - s
. rp automatically and efficiently. In this case. Sys_FACT becomes the bottle
e
«..':',
0N -
—n .
B
\.}-
.. g
Q_; i,
ot e A T

~



neck of the system and hence the time for the completion of the entire
' computation becomes approximately 6nd time units, where 3nd units are
b consumed by GEN and FACT, and the other 3nd units by the back substi-

;, wtion step.

F‘ 9.2. Systems that employ lterative soivers.

Direct solution schemes for the linear system (9.3) do not take advan-
tage of the fact that the stiffness matrix H is highly sparse. This nice pro-
perty is lost in part during the factorization process, thus missing a poten-
SR tial for savings in both the storage and the execution time. For this rea-
. son. it is sometimes beneficial to use iterative schemes for the solution of
(9.3) despite their obvious disadvantages, namely, the absence of a good
o criterion for chosing the initial point and the possible divergence or slow

convergence of the iteration.

' Many iterative schemes exist for the soiution of (9.3). We consider
here only two schemes that are widely used in conjunction with the finite
element method. namely the conjugate gradient method and the multi-grid

[} technique.

v 9.2.1. The Conjugate Gradient method.

This method was originally proposed by Hestenes and Stiefel {211. it

method may be more specifically described by the following algorithm

n/ finds the solution of the linear system of equations Hu=b by determining
_: the minimum u‘ of its gradient functional g(u)=%uTHu - bTu. The
.: .._ method starts with an initial guess u0 and obtains a sequence of approxi-
. mations u].uz,-“ to u‘r iteratively. At the ith iteration step. a new
- approximation u”] is obtained from the previous one ui by the addition of
‘ (:L a step size s along a suitable direction p' that reduces gw). The

Vo, ¥y
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ALG10, where <x.y> denotes the inner product xTy and Ix| is a suitable

vector norm. as for example. the infinity norm defined by

tx1 = max( X 1€i<n} for any n-dimensional vector x. The Iteration is -
forced to hait if it does not converge within / . iterations. N
ALG10
0 5
INPUT u~, H. b and an acceptable tolerance e€. A
DO =b - HO
-
l‘\
*OR /=0,- " max DO -
anad = > p
22 IF =00 THEN p° = /O
i .’
BisE p' =/ ¢ 2 7} w
i-1
a
2.3) Compute the vector y = Hp' and the scalar 8 = <p' y?
i A
i a
4 = =
249 s r; -
2 o't =W ) -
2.6 r’” = r' - sl y =
i+ . . x 4] v
2.7 IFUr I1<e) THEN exit the loop and consider u =u .
[+
Note that step 2.7 in ALG10 may be replaced by other stopping criteria
and that some tests may be added for the detection of any divergence in .
the iteration. Note also that most of the work in ALG10 is in steps 1 and s
2.3 where a matrix-vector muitiplication is performed. The computations in -
the other steps are simpie vector or scaiar operations. o
The convergence properties of the method may be improved by a tech- o
nique called ‘preconditioning’. where the solution of Hu=b is obtained by _
solving another linear system (u=b that converges faster than the original
one. The transformation between H. u and b and H. u and b usually is
simple and relatively straightforward. For a detailed description of the e
\'.,
~.
e e e e YN e L e S AT
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preconditioning techniques we refer to [12].

The second method that may be used for solving (9.3) is the multi-grid

method.

9.2.2. The Muiti-Grid method.

The basic philosophy of this method [38.6) is that. in an iterative
scheme. the amount of computation at each step should be proportional to
the gain obtained from it. In order to be more specific. we denote the
finite element grid (mesh) by Go and the corresponding stiffness matrix and
load vector by H0 and bo. respectively. Aiso, let uo.u1.--- be the

sequence of approximate solutions of Hju=b, generated by a given iterative

scheme.

At the first few steps of the iteration. the residual ri=b0-H0ui
decreases rapidly from one iterate to the next, but soon after. the conver-
gence rate levels off and becomes very siow. Ciloser examination [6] of the
Fourier expansion of the residual (the error) shows that the convergence is
fast as long as the residuals have strong fluctuations on the scale of the
the grid GO' and that this rate siows down when the residuals are
smoothed out. At this point, it is more beneficiai to reduce Go into a
coarser Qrid G1 and continue the computation on G]. This has two

advantages. namely 1) the relative fluctuation of the error will increase when

measured with respect to the coarse grid G... thus speeding up the pracess

of eliminating the error components that were decreasing slowly on G,. and

2) the cost of the Iteration steps will decrease due to the reduction of the
number of elements and nodes and hence of the size of the system. This
idea may be expanded Dby using a sequence of grids GO.G],--- where
each grid G, is coarser than G;_y- Note that, in addition to the applica-

tion of a specific iterative scheme., the multigrid solution process invoives
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some data transformation between the different grids.

For a more specific outline of the process suppose that a sequence of
fine to coarse grids GO‘GI"“ has been given. The number of nodes in

each grid Gi is denoted by n, and hence. any vector defined on Gi is a

i
n; x
member of the vector space R . the desired soiution v of Hou = bo

corresponding to the finest grid is obtained from an Initial guess u0 by the

recursive application of the following algorithm ALG11. starting with i=0 and

.

ALG11

INPUT: A grid Gi' the corresponding matrix H, and right side bl. and

i
n

0 ¢r

i
i .

an initiat point u
1) Use an iterative scheme (e.g. the conjugate gradient scheme) to

compute a sequence of approximate solutions u?,u},-”. Stop the

iteration when the rate of convergence becomes smailer than a cer-

A

tain acceptable value. Let u,

2) Compute the residual r o= b,. - Hl“i

3) Consider the next grid GH-] and obtain the corresponding residual

be the last obtained approximation.

n,
AR i+ on G by appropriately averaging the components of r,.

f141€ /41

Obtain also the corresponding stiffness matrix Hlﬂ'

4 Find the solution of the lower  dimensional system

H =r IF i+1<k, THEN invoke ALG11 recursively. ELSE.

i+1 Bin it1”

solve HkAk = r exactly by means of a direct solver.

K

5) Interpolate 8; 41 back from G,.ﬂ to G,.. Denote the interpolated
"

vector by 4. (AieR ).

x A
6) Set the solution v = U'. + Ai'

The averaging operation in step 3 is taken to be the dual of the inter-
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polation operation of step 5. That Is. if we denote by Ifﬂ the linear
operator used to obtain 7' ') from r,. and by /; 41 the linear operator used
to interpolate 4,47 to 4. then the two operators are related Dby
I;H = ¢ (I;H)T. with some constant c.

Finally, we note that the matrix H corresponding to the grid G

i+l i+1’

may be obtained either directly by using ALGS of Chapter 7. or from the

- II-H H. ,i

relation HIH = I i i

It can be seen that the two approaches are

equivalent.

After having introduced some possible iterative schemes, we describe
next their application in the context of a systolic/pipelined finite eiement

system.

9.2.3. An iterative systolic finite element system.

in what follows. we will assume that the iterative scheme used to soive
(9.3) invoives the matrix H only in the computation of its product with a
certain vector. It was shown in Section 8.5 that this product may be
formed using the unassembled elemental arrays. thereby eliminating the need
for the irregular assembly stage. Moreover. the system described in
Chapter 7 pipelines the computation of the elemental arrays ﬁ].-“.ﬁm.
Hence, for a given vector p. the calculation of the partial product vectors
1_-=11 m_=—m_m L m

y =H p .---y =H p . may also be pipelined. where p ,---.p and

y].-v -,ym are as described in ALGY9 of Section 8.5.

The multiplication y°=f7°p°, e=1,-+-.m may be performed on the sys-
tolic network described in Section 3.1. This network is shown in Figure 9.3
{'-'.:: . after relabeling its nodes in a manner consistent with the networks that

v 4 generate the elemental arrays. The additional row of cells shown in the

figure Is used to prepare the output of GEN in the form required for the
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Y Figure 9.3 - A matrix/vector muitiplication network

} proper operation of the muitiplication network. More descriptively, the input
A

'.‘1:-"_ i 20 oo k= ; .
'.5'-".'_'- links zu.q+6' u=0, k=1 are connected to the corresponding output links

in the subnetwork N8 of Figure 9.1. Hence. the data sequences on these

links are described by (9.2.a). However. by comparing (9.2.a) with the for-

'.'.'-j:':’,: mula (3.11.a). given in Secticn 3.1 for the Input of the muitiplication net-
( ¢ work., it Is clear that the elements of the o off~diagonat of the multiplied

matrix should be followed by u zeroes when transmitted on the input links

of the network. These zeroes are not present in the output of GEN as

described in (9.2.a).

e

SN,

.:-"':::: In order to insert these zeroes in the data streams. we use the muiti-
-" -

b >,

O plexer cells (u.g+6). u=0.--- k-1, to multiplex appropriately the data on the
: 3_; links Z, G +6 with the zero sequence (. The operation of these cells is

tormally described by

3k-u).3u

=M, ieurak+19%y g6 -

4 L)

u.q+?7

With the help of Properties P5 and P15 in Appendix A, it can be

shown easily that the data on the links Z, are in the form required for

qt7
the proper operation of the matrix/vector muitiplication network. namely
- nq+6u~r3k<r19 3k 2

‘e - o s -
Cuqer = Po=1m© &) us0.- -+ k-1 (9.4.8)
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-_' ‘e _ ) o
where T(”'u) = k and .
" - .
» o Ht,t'fu if t‘k-u .
.. u, =
;:' 0 if t>k-u K
- in order to obtain the desired vectors ye. e=1.-+-.m, the components :
oo of the vectors p®., e=1.---.m must be provided on the input link r, q+7
":R‘ according to the formula
[~
_ ~Gt3k+19 _3k 2 _e
i po.q+7 = Nl Pe=1.m‘° m) (9.4.0)
where T %=k and ) = pte is the tth component of the vector pe.
From ALGY9, we have pf = p{glob(e.t)). Applying the remark of Section
] . -
3.1 with ¢=3 and using the technique of Section 5.4 for verifying the pipe-
;::_ lined operation, we may prove that the output on the link 'k+2.q+7 is
) _ ~Gt9%+21 3k 2 _e '
' Pks2.q+7 = 0 Poz1m® m) 9.5 2
o _ e, _ 8 e =
where T(n )=k and n () = Yy Thus 7 contains the components of the -
- -
N vector ye =ﬁ°p°. .
' if the host computer coliects the outputs from ’k+2,q+7 and accumu- )
lates each element yte in its correct position y{(glob(e.t)), in one time unit, K
-\.l
‘\-.‘, then the product matrix y=Hp will be available only eight time units after ~
- the generation of the elemental arrays Is completed.
In an iterative scheme, the formation of the product Hp. for a certain ]
: o vector p. constitute the major part of each step. The remaining part of
'i :’. ~
! each iteration step is less time consuming but depends on the scheme ;
' ,':l; being used. it also requires some intelligent decisions concerning the con-
v
b vergence rate and the stopping criteria. Although it is possible to design X
RS
[ 3 special hardware for the completion of some iteration, we believe that it p
! .
,' would be more appropriate to assign this task to the host computer. -
s !
-
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DARATR GEA/
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s STORE
Yes l [
converged el
,.7 MULT

Figure 9.4 - A system that empioys iterative solvers

In Figure 9.4, we show a block diagram of a systolic system that
employs an iterative scheme for the solution of (9.3). It is composed of a
host computer and two systolic functional units; namely GEN for the genera-
tion of the elemental arrays and MULT for the matrix/vector muitiplication.
In this system, the host is more invoived in the computation than in the
system that employs direct solvers. In fact. the host is a general purpose
computer that executes a sequential finite element program and uses the
systolic units GEN and MULT as high speed devices to perform some

compute-bound operations in the program.

The elemental matrices. I-—le e=1,---.m, are used throughout the itera-
tive solution process. Hence. they may be stored in the auxiliary storage
STORE (see Figure 9.4), and repeatedly used in successive steps. Note
that the form of the input to MULT described by (9.4) was implied by the

assumption that MULT receives its input directly from GEN. However, if the

elements of A°. e=1.---.m can be fetched from STORE at a rate higher
than the one specified by (9.4), then GEN may generate the vectors ye.

e=}.-+-,m at the same rate. More specifically. if we replace the input

sequences (9.4) by

DR e -_"‘._ -~
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_ atedu ~g
Cyqer = 0 P:=1,m w,)

- ~2 e
pO,q*7 =N 9=1.m(1’ )

with some initial delay a. then the output will be described by

_ ~at2k+2 L]
Pre2.q+7 = 0 e=1.m™M)

rather than by (9.5). That is we may increase the speed of MULT by a

factor of three.

But for use with practical problems. STORE should be a high capacity
storage device. By current technology standards. this means that its speed
will be relatively low. Hence we may not be able to supply MULT with the
needed inputs at a rate faster than the one specified by equation (9.4). In
that case. it is more appropriate to eliminate STORE from the system and
to use GEN for the regeneration of the elemental arrays at each iterative
step. This may seem to be an unnecessary computation. However. by
applying this idea, we increase the speed of the system by using a

resource that would otherwise be idle.

The idea of regenerating the elemental arrays is even more attractive if
a multigrid technique is used for solving (9.3). More specifically, it is clear
from ALG)1 that the muitigrid technique often switches from one grid to
another, and in each such switch the global stiffness matrix corresponding

t0 the new grid has to be generated. In that case. the regeneration of the

Eff--j elemental arrays in our system becomes an essential operation rather than
F-. N a redundant one. Note that the architectures of GEN and MULT neither
r"' depend on the specific mesh that covers the problem-domain nor on the
:" bandwidth of the resulting matrix H. Hence, the matrices corresponding to
R

?! L the different meshes may be generated from GEN without any recontfiguration
’ - or change in the control parameters.

) °.
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Finally, we note that the speed-up in the finite element computation
achieved by the system sketched in this section is due to many factors.
namely. 1) The pipelining of the generation of the elemental arrays. This
factor is more prominent if a multigrid technique is used to soive the linear
system (9.3). 2) the eiimination of the time consuming fetch operations from
the sliow speed auxiliary storage. 3) the reduction of the time for each
iteration step by a factor of k (kd in general, as we will see in the next
section). which is the speed-up provided by the systolic network MULT. A
general mathematical formula for the overail speed-up provided by the sys-
tem seems to be impossible to obtain. This is mainly due to the absence
of any reasonable crlteria. for the estimation of the implicit speed up
obtained by the smooth flow of data in the system and the elimination of
the store/fetch operations of both the data and the instruction. In fact
more research needs to be done in order to obtain a good measure for

the evaluation of systolic systems.

Next. we consider the decomposition of the multiplication operation

y® =7°p® in the case of problems with more than one degree of freedom.

9.2.4. The decomposition of the matrix/vector muitiplication for d > 1.

in problems with degree of freedom d>1, each (.)™ element A

1</.j<k of the matrix ﬁe is a dxd sub-matrix. Here. we denote the

h eiement of this sub-matrix by A° Similarly, we denote the g

ig:g.d
element of the d-dimensional sub-vectors y‘.e and pie by yie'g

@.n

e
and p,. g’
respectively.

With this notation, the dk components of the vector ye = I-—iepe are. for

i=1,»--.k and g=1,---.d, given by

*
A

i
|

7
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(-] k d - e
Yo = L L H, .. P, . 9.6) .
e IV B R
g [}
= L A
j=y el
Ko
where A’G’ = E HI I.Ol pll ]

i

it the idea of Remark 3 in Chapter 7 is used. then the systolic system

GEN may be applied to generate the da? elements FI?J: g.l of each Fif’ /
simultaneously, each on a separate output link. Hence, each link z, Q7 ‘
0<u<k-1. may be replaced by the d° links z,. g1+ §4=1.<-.d. where the
output. data on these links are described Dy:

Ly = I tourdkT po - (6 i) ©9.7.2)
with rc&:;g p = k and

w0 ={n:.t+u:g,l f t<k-u

vl 0 it t>k-u
This is a generalization of the formulas (9.4.a) to the case d>1.

Then, the d2 partial sums Aie:g.l' g./=1,-+-.d may be generated

simultaneously by using d2 identical copies MULTgJ. g.l=1,»+-.d of the

multiplication network MULT. The inputs to each network MULTg, are the
generalized forms of (9.4.a/b). namely (9.7.a) and

= 2tk t19 Bk g2 .0, @.7.0

"o:q./ e=1l.m g.l

where. for any g. 1<g<d. T(ﬂ p=k and rrg ,mzpf,l. With this. it is

straight forward to show that the output of MULTgI is

g +9k+21 3k g2 n: ) 9.8)

L e=1.m

Pre2:g .1

s L
TR O e ._1
.LMJQ.A_ "r;;..‘;_. ey
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g )=k and 72 I(t)=A° This is the corresponding general torm

where T tigd

of (9.5).

in order to obtain the components of yle,g, the d output links rkﬂ'a [

/1=1,-++-.d for a fixed g. 1{g<d. are connected to an adder as shown in

Figure 9.5(a). Hence. the output of this adder is described by

Z..-Ig 1 4ro.., K.t
r" ' n UL T’l' f
27, ——_J

ko),'j"

- -

zk;ng PR Y 3

MLT, ,

e,

- MV
Cv;;,d LT"J

| sy l;;ld

(@) Non interleaved muitiptication (b) Interleaved muitiplication
Figure 9.5

__qt9K+22 3k 2 e
Prs3g = 0 Poz1m® 19 9.9

d
e e L’ ]
n)= t)= A = .
where T nq) k and ng ’);",1 tigd Y,;q

We should note here that each of the d2 networks MULT operates

g.l
once every three time units. However, the efficiency of the system may be

improved by interleaving the computation on a reduced subset of these net-
works. In order to be more specific. we assume that d23 and apply the
Remark 2 in Chapter 7 to increase the pipe separation during the operation
of GEN from 3k to dk. This aliows us to use only one link ‘z:“ to multi-

g

plex the data on the d output link 2,9 i=1,--+.d. In terms of data

sequences. this means that the equations (9.7.a) are merged into

AR

el




s
o
“

LI S
eV LV Y

- = qt2du+dk+19 _dk d-1 ¢
cu:q fn FastmMy " @ Kyga "ot '@

~e

K », g=l,---.d and u=0,--- k-1

u.g.d

We may then wuse only d matrix/vector multiplication networks

MULT,.H-,MULTd. and apply to each network MULTq, 1€g<d. the inputs

described by (9.10.a) and

Pdk

_ ~Qtdk+19
=n e=1.m

Po.g

_ 9tak+19 dk e
n szLm @ (9.10.)

Here. for any g. we have r(i:)=kd and ﬁ:m= pf. that is. the " com-

ponent of the kd-dimensionai vector p°.

With this input to the network I/0 description. it is easy to show that
the output of MULT, is

dk " d-1 _d-1 _e
P RRRE1 <) ng.d

_ nq+3dk+2'l
- e=1.m gl

pk+2:g »

The accumulator shown in Figure 9.5(a) is used to accumulate every d
successive items on 5“_2,0. The operation of this accumulator is formally

described by

- qt22d.1 —
Prezg =1 A k+2:g
which gives

Pdk (ed =1 ne)

= a9 +3dk +21+d
e=l.m g

6k+3;g =
Thus, we obtain the same results as with the sequence pk+2;g of equation
(9.9) but at a rate of one result every d time units rather than every three
time units. In other words. in order to increase the efficiency. we have to

reduce the rate at which the system operates.
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10. CONCLUSION.

AR I
s

= This dissertation is intended to contribute to the area of computer ::;
::" architectures in two different ways. namely (1) by formalizing the concept of =
systolic computations, and (2) by providing a basis for the design of a :~:
systolic/pipelined system for finite element computations.
s
The mathematical model suggested for systolic networks provides a -
method for a clear and precise specification of systolic computations. It J
also results in a format technique for the verification of the operation of .
systolic networks. The central concepts in the abstract model are those of "
data sequences and sequence operators. Although we only defined the few 7 ‘
operators needed in this work, it should be clear that further sequence o |
operators may be introduced to model other types of computationai cells. E
The computer equation solver. written to supplement the abstract model. _
K
is intended to be used in particular for the computationai assessment of :'.‘:
systolic networks in those cases where the analytical verification is difficult. =
The application of this solver is equivalent to the simulation of the operation -
of the given network for specitic input data. The syntax directed approach ;-::'
used in the implementation of the solver/simulator led to a very modular
program, which simplities the task of introducing new sequence operators in
the future. Actually, the addition of a new operator (a new production ruie
i the grammar) requires only the impiementation of a corresponding —
semantics routine that describes the effect of the operator. .
The potential of the abstract model extends beyond its application to .
clocked systolic networks. In fact, the discussion in Section 5.5 is a first »

step toward the appiication of the model to self-timed systems and the uni-
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form treatment of systolic networks irrespective of the method used for syn-

chronizing the operation of their cells.

Besides its value in demonstrating the power o'f the systolic model. the
design of the finite element system suggested in this dissertation may be
particularly useful. In addition to being adequate for VLS| impiementations,
it has the advantage of being modular in the sense that if the system |Is
designed for a specific number k of nodes in each element and order q of
the quadrature formula, it can be easily modified to perform the analysis for

different values of k and q.

Moreover, by applying the idea of pipelining the computations for the
different elements, we obtained a design that is independent of the domain
of the problem and the number of elements in the grid. It should be
noted. however, that the LU factorization network used in the system based
on a direct solver does depend on the bandwidth of the stiffness matrix.
which in turn depends on the finite element grid and on the numbering
scheme used for labeling its elements. More research is needed in order
10 obtain a system that is completely independent of the structure of the

finite element grid.

In Chapters 7 and 8, we presented an analytical verification for the
design of the different components in the finite element system. The design
was also checked using the solver/simulator of Chapter 4. However, due to
space iimitation, we did not include the details of the simulation in this

dissertation.

Finally, we note that it is not easy to define a measure for estimating

the efficiency of systolic networks. An intuitive measure would be the quo-

tient %. where T is the time needed by a systolic network to compiete its

computation, P is the number of computational cells in the network. and C

- .-.’::;._‘_ -
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ij is the number of operations to be computed by the network. This measure.
N7
however, does not take into consideration the type of operations performed by
. s
by a cell. which in our case range from simple memory cells to floating
T~
point dividers. It also ignores the benefit obtained by the regular movement ;:j;
of the data in the network. In [23] a more elaborate measure was sug- -
e
gested that takes into account the bandwidth of the input and output links -
of the network (n comparing the efficiency of different systoiic networks. v
Both measures astimate the utilization of the computationali ceiis in a net-
work without differentiating between the different types of cells. This is -:;j
S
acceptable if all the cells in the network are of the same type. However, if
the network contains more than one type of cells, as is the case with our 5
system. we believe that the utilization of each cell should be multiplied by a -
A
N
weight that reflects the hardware complexity of the different cells. More f
work is needed to develop an efficiency measure of this type. é
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‘ APPENDIX A

Properties of sequence operators.

£
o In this appendix we list some properties about combinations of the dif-
ferent operators defined in this dissertation. All the properties are directly
' verifiable from the definition of the operators and are very useful in simpli-
‘_3’. f— fying any manipulation of the sequence expressions.
ST O
\ ) Most of the properties take the form “sequence expression = sequence
\ & expression”. However. some have the form " sequence expression -
:;:: sequence expression®, where we formally define the implication operator -
\ r. as follows:
-

E Y

.
o

IF for any t efther N(t)=§U) or Mt)=8 THEN ¢-7

NS
S
‘e
.

vrl "\ .

that is n is equal to § after replacing some of its elements by 5. Conse-

RPN

quently, if §£-7. then we may replace & by 7 in any sequence expression

+ ™

as long as 0 is treated as a don‘'t care and not as a speciai symbol, that

A
f is in the contest of inert computations. Of course, if §=n and n-=¢ then
S
e S
t:.: S é=n.
- P1) For any element-wise operator ‘op’ with 6 ‘op’ 0=6 we have
SO
2 1) For T =N. © E or P
e L&) ‘op’ T = T 'op’ M
.° wl..wn e, W l..wn _
1.2 Mr (f.l,- . -.€n) op Mr (‘n]n . ',nn) =

o wl...wn o o

2 M (t&y ‘op’ myl.- - -.lE, ‘op' WD
B 1.3) As a direct resuit of P1.2 we have
.. ZJ L, wl,..wn - W 1l...wn ., .,
T §€ op’ M, ™,. my) =M, ¢ ‘op’ m,l A& rop” 7,0
j"l' 1.4) If. in addition. ‘Oop’ is a d-regular operator then
P

=
-
.\.
A R N A N S N R L O SR SRS LC SULE LU DEOEOL T SELGIGY. , Clve ba LRI Sk
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n & opr n=a ¢
where T = min(Tm-r.T)) and () = £@) ‘op’ nt+r)
P2) For the scalar multlp.ucauon operator °‘.°, it follows that
21 For T =n, 6, E or P
w . T@ =Tw . ¢
22 w . MYy = MY g yLccew . om D
P3) Composition of N with itseif
avnnég=nc¢
3N ' neE =¢
3y an' g =¢ if and only if £(1)=0
34 ¢ -nn ¢
P4) Composition of N with ©
e n" & = n(rﬂ)k e 3 for r20 and any k
PS) Composition of 0 with M
s 0 MYy = MY LM @S e )
for any rand s > -r
52) n M,',’"""""(er'--.en) = M;'""'"”men (TSN < T
5.3) nk M;vl....wn(e]'. . "en) - M;v],...wnmker. . '.ﬂkén)
where k = Wit tw,
s MY e =l T ML e
55 MY Mg g = MY M %0 g
where g = w +::-+w,
P6) Composition of N with £
6.1)E’r‘+sns£=nsEk£ for any r and s > r
6.2 E’r‘ﬂ t=a Elr‘ﬂ
63 £ a* ¢ + af £
I e AT e e gt L LT e sy
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b P7) Composition of N with A
r.k. -u .k,

' 7.0 ATKS gl g 2 gl pruks for u < r

7.2) Ar+'l,k.s € = a a’ Ar+1.k.s ¢
L]
'%J'
L P8) Composition of N with P

r e, _ ok r ,e

- AN S O R A
oo r ,e r ok

82 Ao, @ & - P % if TE® < k-r
L -r e K -
= 8.3 n P§=1.m“ ) = Pyim@ € it T&® < «

-r ,e -r e ro.-

- 8.4) P:=-‘I.m(n €« a7 A% it o g® - ¢®
»
< .’
! 8.5 Fh o - o' A @
X, P9) Compasition of © with itseif
- e ek £ = ek o ¢ = ekri-k‘l-r ¢
o~ P10) Composition of © with £

100 £ o3 ¢ - 687! ¢

' 102 o871 £

re1 €7 E::ﬂ 7 ¢

o P11 Composition of 6 with A
alks o8-, . = eS1 Atk
{..w P12) Composition of © with P
o ek=1.m(e$..I ¢ = &7 :='l,m(€e)
P13) Composition of M with itsett
= 130 i &, =M @ -1 then
- i r 1 n

M:'"J(&],' PR ‘,5’,) = M:""1(£],- Cemp e "en)
. 13.2) le«-m,l...,1(er(::,1,...1(“]"._’en) myeeem ) =
o M‘,‘;g'm']""lm.n,,-'-.nm.e].---.en) for m+n < k
v P14} Composition of M with A
! 190 A7KS pde T g0 = ATHS g o 1<k
14.2) A7k MJ""‘(&.' £ = M:" 1(1;1,---.1;,()
- where 7, = )_"j ™ £,




P15 Composition of M with P '

wl..wn P 0. _ _
wl..wn : x
s =1.m M) (e‘,’,...,e:» for kK=w 14+ - - +wn

P16) Composition of £ with P

o -
80 By P = A 9

e=1.m 1 =
e K EN
L R L) for r>0
P17) Composition of A with P i~
1.k.1 k e, _ k 1.k.1 ,e
A F’:=‘l,m(e ) = PZ=1,m(A ¢ A,
P18) Other properties invoiving the muitiplication operator ‘* N
18D EF &t m - tgeen o g it T < kir 2
18.2) It T<€,)<kn for r=0.+++.n-1 then
i), = aiagled N
M) g eg, )t P = M gL ) o
where cr = n((lunr)ﬂ) . £r . r=0.1.--+.n-1 and a, is the ..
modulo n addition operation on integers. =
P19 if "l j=1.2....k are such that T(ni)=n. then
k
-1 k=1
T ni 77,- =N n -
i=1 =
k S
where T(n) = n-(k-1) and n¢t) = T, ni(t+k-/).
/=1
The next resuit uses the ® of Section 2.1:
P20) Let the sequences M j=0.1.....k satisfy T(ni) = n-j. then
2 K
7’0@“"1@“ 772@"'@“ ﬂk=7 -
where T(¥) = n and -
t=1
T = t=1.2....k o
i=o / ’.-?
) = )
K -
£ na-n t=k+1.k+2,..n -
i=0

% a® e
SN DA I A
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Next. we prove some lemmas that we used In the dissertation.
Lemma 1. The difference equation
g,,, =0°a + 4 =
i"'] - I + , I'-S.S‘f]."'.kf] (8.”
has the solution
o = ST +’£.’ o€ U= _
r 5 Ar-/+s-1 r=s+1,- - k+1. (a.2)

/=s

Proof. The proof uses

%5 +1 s

which is identical to

Induction on r. Evidently, for i=s in (a.1) we obtain

- ~C
=1 o +As

(a.2) for r=s+1. Hence assume that for any r=s+1, ..

k. o, is given by (a.2). then from <(a.1) it follows that

o =nf o

r+ r t Ar

c cr=s)

=0 M

c(r+l-s)

=N Os'fgﬂ

= nc (r+l1-s)

c(r+l1=-s)

=N o]

which proves that o,

Ltemma 2: let fx be

defined in Section 3.3.

min(max{xk . fx(l-1.k-1)) ,

Proof. Let Yy.

ascending order. and

Hence. f (=1k-D=y, _

os+)'_‘,n

: -
9+ L N B jes-1) t 4,

c(/+1-s)
Ar—/~t~s-1 t Ar

7V -8 A
j=s~1 r-j+s=1

r
+ T nc(l S )
i=s

A

S r-j/+s

1 is also given by (a.2).
for the set X={

the ranking function 1 x2....xn), as

then

fx(i,k-m = fx(l,k) (a.3)
Yx-y be the result of sorting x,. ---, Xy (n
Zy. e 2, the corresponding result for Xyo e X

fx(/.k-1)=y,. and fx(l.k)=z'.. Now consider the fol-

1°

R i e e i D L
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'..',.\- lowing cases:
a -
i D x, <y_, <y then the left side of (a.3) Is ;:1
,\::\. mln(max(xk , yl_]) . y,} = min(yl._, . yl.} =4
nkn“ ..‘
gy ; .
Gy ince 2, ++- v e
»‘l';\' S 1° .z, are obtained from Y- Yy by inserting X, In some
position before Y-, we immediately see that Y.y = % c!
2 It Yi.y < x, < y;. then the left side of (a.3) is <
(x 15"'
min{max - y,_]} . y,) =X
and in this case it Is clear that x, = z,. L

3 if Yi-q < Y; < L then the left side of (a.3) is equal to Y, which in

turn Is equal to z, because. In this case. x, is inserted in some position w
after Y;-
N0
Lemma 3 : The system of difference equations =
L 2 al2 =
pl"’] = N MS"’,(L B [Xi + pil) I_rO'. . "r'l @a.4) E:
{ ‘QM]'Z((A + pJl ) i=ry, -« a.5)
iz sttty T RL L =o-" "N ' =
with the conditions prO = L angd s+ro >3 has the solution
1.2 - o
n Msﬂ“‘i Y i=ry
- 1.2 02 __ -
¢ =AML+ A0 L0 i=ryt
- 1.2 4 2 - ..
s OMLLAN, 5, + 7N+ A0 I=ryt2. e
.-Z Proof: The cases I=r0 and r=r0+1 are easy to verify by direct substitution. .
Hence. we will consider only the case I>ro+2. First, we will prove that the W
solution of (a.4) is v
IR - 4 . =r 42+ .-
p; = Msﬂ([n LR SR LI VRPY B ) i=ry+2. g (a.6) e
For this, we use (a.4) twice to get
‘ . ) - e .\ . . R . - ._‘. - ’_-""",0 “‘\-. ... .‘. \._ “.-;“ -\_ -.; .~..;:-‘: ._._“
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- 2 agl.2
P, = N Msﬂ_]u. . tx,_] + pl_]l)
_ A2 ag1.2 2,,1.2
=N Ms”_](l. SN YRRE L M“I -2t . xl_zfp,_z)l)

By applying Properties P5.1. P52 and P1.3. and replacing the
sequences non relevent t0 the computation by 6.. we obtain

2 ,,1.2 .11 * = 2

= 2
P; N Msﬁ-l(" . M“,_,w .0 .u,_, + N "/-2 + N p,_zl))

_ LI P B 2 2
= a2 M-y . 0. N 407N, 0%, o0

1.1 2 4 4 x
Mgy dO°N i+, 0o, o) 67, 8 @.”n

Now. if l=r°+2. then, from the hypothesis, P;_2=P,q=t. and thus @.7)
reduces to (a.6). Eise. if i>r°+2, then we replace Pi-o in (a.7) by its

vaiue from (a.4). This gives

= M2 4 6,,1.2 x
P; sf,(m LTSRN SR 1he VRPN Moyi-g(t . N gtP;_g) . 8)

- 12 1.2, 6 x
(1 W 1 Y 2t MEabie™ 6"

where, again, we replaced (x,_3+p,_31 by o'. Now, Property P1.3 gives

_ ‘|2 = =
pl.- s+l sﬂunx,]mxz»fnu.o . 08)

_ oul.2 4 =

= s*,([n x, 1N x 2+n t} . 0)

which reduces to (a.6) for s+i>6, that is s+r0>3.

Next. we substitute (a.6) into (a.5) and apply P1.3 to obtain

_ 1.2 2 4

¢ =0 M s*,(n LTL 00 VT 1 ¢ WP BPPD
_ 1.2 2 4
=0 M O e 1 )

which is the required formula for the case i>r°+2.
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APPENDIX B

The grammar for the SCE language.

Terminal symbols

PAR INDEX SEQN FOR DO END MAXTIME INPUT OUT
Comma Semi Colon Equal Plus Minus Muit Div

Lbrak Rbrak Lcurl Rcurt Lpar Rpar Period .

0] Z T A E M n u2

Identifier Positive_.integer Positive_real

Grammar rules

1) <prog>
2) <«declare>

<declare> «in_part> <body> <out_part
<par_declh <index_decl> <seqn_dech

/* PARAMETER DECLARATIONS */

3) <¢par_decl PAR c<pear_list» Semi

4)

S) <par_list = <par_list> Comma <par_stmt
6) i «<par_stmt

7} <par_stmt = identifier Equal Positive_integer

/* INDEX DECLARATIONS */

8) <index_decl> INDEX <i_list> Semi

9) 1
10) <i_list = «i_listy Comma Identifier
M ! ldentifier
/* SEQUENCE DECLARATIONS */
12) <seqn_dech = SEQN <dim_list Semi
13) «dim_list> = «dim_list> Comma <seqn_dim>
14) i <seqn_dim>
15) <seqn_dim> := |dentifier Lcurl <range_list> Rcurl
16) i Identifier
17) <range_list = <range_list Comma <range>
18) i <range>

19) <¢range»

<i_expr> Colon <i_expr>

..... AP
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NS
NI /* INDEX EXPRESSIONS */
[
: . 20) <i_expr u= d_expr Plus <_term>
. 21 i <_expr> Minus <_term>
" 22) P Ci_term
= 23) <i_term> n= «l_term> Mult <i_factor
. N 24) i «<_factor )
. 25) «i_factor = «simple_factor '
26) { Minus <simple_facton
! 27 i Lpar <i_expr> Rpar
BT 28) <simpie_factor> ::= Identifier
29) | Positive_integer
VNS
SN
" /* THE BODY OF THE PROGRAM */
30) <body> = «stmi_lisp Semi
O 3N <stmi_list u= <stmt_lis Semi <stmp
4 32) i <stmd
. v 33) <stmb> = <eqm
g “ 34) i <for_stmp
) 35) «or_stmv> = FOR <for_spec> <stmt_list> END
. 36) <for_spec> = |dentifier Equal <i_expr> Comma <i_expr> DO
:: t::'_ 37) <eqm = «seq_spec> Equal <seq_expr
; i /* SEQUENCE SPECIFICATIONS */
i
N 38) <¢seq_spec> ;= Identifier Lcurl <indicat_list> Rcurl
o - 39 i ldentifier
D 40) <indicat_list> = «indicat_listr Comma <_expr
. 41 I d_expp
N
x - /* ELEMENT WISE OPERATORS ON SEQUENCES */
&
MERAN 42) <seq_expr = <seq_expr> Plus <seq_term>
N ’ 43) ! «<seq_expr> Minus <seq_term>
AN 44) ! «seq_term»
N - 45) <seq_term> = <seq_term> Muit <s_factor>
e e 46) ! <seq_term> Div <s_factor
. 47) i <seq_term> U1 <s_factor
. 48) | <seq_term> U2 <s_factor>
49) 1 «s_factor
50) <s_factor ;= Positive_real Period <seq_factor>
51 ! <seq_factor

- . - - - . - . . - . o . ~ O “, .
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.
LA,

%10

R
:,
P
X

52)

s 53)

S 54)

'-::: 5%
o

-3 56)
o

N 57

e 58)

0
o

. 61)

62)

s 63)

v 64)

o 65)

(e 66)

b | 67)
<5
b
E}‘_j

o 68)

- 69)

70)

7D

72)

73)

74)

75)

76)

N

78)

/* OPERATORS DEFINED DIRECTLY ON SEQUENCES */

<seq_factor> u=

<muitiplex_op>
<simple_op>

<op_power> i=
«choice_list  :=

<ratio_list> =

<seq_spec>

<simple_op> <seq_factor>

<muitiplex_op> Lpar <choice_list Rpar

A Leurl <d_expr> Comma <i_expr> Comma
<i_expr> Rcurl <seq_spec>

Lbrak <seq._expr> Rbrak

M Lcurl <i_expr> Semi «<ratio_list> Rcurl
O <op_powenr
Z <op_powenr
T <op_powenr
{ E Lecurl <_expr> Comma <i_expr> Rcurl
Leurl <i_expr> Rcuri

«choice_list* Comma <seq_expr
<seq_expr>

<ratio_list> Comma <i_expr>
<_expr>

/* INPUT SPECIFICATIONS */

<in_part
<inp_list

<inp_spec>

<o_for =

INPUT Lpar c<inp_list> Rpar Semi
<np_list Comma <inp_spec>

MAXT Positive_integer

<seq_spec>

FOR do_for> <np_spec>

identifier Equal <i_expr> Comma <i_expr>

/* OUTPUT SPECIFICATIONS */

<out_part> =
out_list =

<out_spec>

OUT Lpar <out_list> Rpar Semi
<out_list>» Comma <out_spec>
<out_spec>

<seq..spec>

FOR <o_for> <out_spec>

ZXARRXXZZRERRARRIRRRRARRR

.......
...........




APPENDIX C

The listing of the SCE vinterpreter program

/%% GLOBAL DECLARATIONS xx/

$include <stdia.h>

define Prod_lendth 450

idefine N rules 78 /% number of rules in the drammar %/
$define N.djums 24 /% rules not reauiring ans action X%/
$define N.sumbol 20 /X size of the sumbol table X/
$define N.bound 20 /% size -of the bound table x/
idefine N.sean 129 /% aax. number of seauences used X/
$define Maxtime 30 /% urper limit on simulation time %/
tdefine stack.lendgth 40 /% length of working stack 74
$define N_words {((Maxtime + 1) / 16 ) ¢ 1

tdefine N.ratios b /% mai, $ of arduments in M orerators X/
$define N.real S /% max, ¥ of real constants used X/

int overflow(3] =
N.seany Maxtime +
FILE xforen() » Xf» j

/X an arr3y to store
struct { char action

{ Prod_lendthy stack_ lensthy

the esrodran trirles %/

207

| TR A

_sumboly N_bound,

1 » Noratioss N_real }

1
A int value
I ) int tor i > srodlProg_lendthl
- int location H X pointer O Prog array X/
/% adJustlil] contains the lendth of the R.H.S. of srammar rule
1 minyg oner which is the addustaent in the tor of the stack X/
~ int adJjustiN_rules] = {-3y =2y =2y 1y =2y Oy =25y =2y 1y
0y =2 =2y 05 =3y 0y =20 0y =2y -7v
=2y Q09 =2y O0r 0y =1y =2y Q» Oy =1y
o =2 Q0 Oy Oy -3y °59 -2» =3 Oy -2’
W 0y =25 =2y 05 =2y =2y =2y =27 0y =2
o . O Ov =1y =3 =8y =2y =5y =1y -1y -1y
=99 =25 1y =2y Oy =2y O -4y =2y -1y
- “0, 21 -4y =4y -2y Oy 0y =2
- ba .
- /% dumsl] contains the number of ‘the drammar rules not reauiring <
any action %/ -
o, int dumsCN_dums] = {3y 4 Sy &y 8y 9 12y 13: 14y 22y
< - 24, 25y 29y 31» 32, I3y 34y 44y 49, S1y R
L. 69y 74y 7%y 76 . R
¥s Eq
< int stacklstack.lengthl i /X dynamic working stack »/ -
. flost fstackCstack_lengthl i /% 3 matching value.stack X/ -
/% SYMBOL TABLE i tuee= Sy F or 1 for sean., sarameter or index» respectivelw. X/ -
- struyect { char tyre e
<. int entryli v
int entry2i ¥ sum_.tablN_swmboll i :!
“e int lbound{N_.ooumnil i /% lower bound table X/ N
u tnt ubound{N_bound] i /X upper bound table X/ 3
O int ran_sir = -1 i /% rointer Lo bDound table X/ iA
o B
b .
-‘_("'1:.-’ ~ .'...f.’ AT A < ..-":. """"" e . “ ". ...... .f e, \<
AL Al e T e ey e N et T T T L T A e e e e e T _\i -\.&.\-\.ﬁi\
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/% SEQUENCE STORAGE */

Ploat sea.storefN_seanl[Maxtime+1] i /X seauences storage %/ o
unsidned d_ tabletN-sean]CN worisl i /% keeps tracks of don‘t caresk/ e
int sea_rtr = 0 /% rointer L0 seauence store 3/ .
int sea.size /% 3ctual size of the table %/

for consistancy checks X/

-
~
%

int 1ast-coarutodEN-scenJ

float r_storelN_reall
int  roptr = -t

vIE I

/% storade for redl constants %/
/% the correspronding epointer %/

- ae

int ratio.tens(N.ratios] } /% to store aultirlexer ratios %X/
int ratio.rtr i /% & rointer to ratio.teme X/

int not_done ’ /% 3 loos control variadle X/

/!!*Xtt**!3!!1*!!*!8*13*!*!*X*iit*!!*t*ttt!!!X*lt!tt!*!**!!lt!!!*/
THE MAIN PROGRAM X/

naxn()
{

char 3ction

int  value

int top = -1
int J» looking
int stade

int end.stadelS]

erd.stade(1]=22 i end_stagel21=48 i
end-stase(3]=3o_3 end_stagel4lsl

/% oren the file that contains the srogram turles X/
f» = foren(’out.rarse’s 'r*) §
for(sea.rtr=d § sea_srtr < N_sean i sea.rtr++t)
tor(Jya0 3 J < N.words § Jtt) o
d.tableCsea_rtrllyl = 0 j o
sea.ptr = 0 § S

/X Build standard entries in sumbol tables thew can be .
overuritten by rrosrer declaration x/ -

for(i=0 # J < 3 3 J++) ]

{ sum_tablJjl.tyre = ‘S’ 3} :
sum_tablid.entryl = see-#tr i .

last-conputed[sea-ﬁtr++] Maxtime i o
sum_tadlil.entry2 = -1 /X% indicating a sindle seauence &/ o

/% current top of stack X/

e WP e e W

SESY
NS

'r A

>

for(i=3 § J < N.swmbols i J++)
sun_tablil.tyre = 7 /' -

for(u=t § J < Haxtine i Jtd) pass

{ sea.storel11CJ] = 0.0 o
sea_store(21(J] = 0 i}

for(i=0 # J < N_words 3 J++)
d-tableC03CJ4l = Q177777 i

for(J23 3 J < N.sean 3 J++t)
last_comsutedlJl = 0

/x END OF INITIALIZATION AND BEGINNIG OF MAIN LOOP X/ .

/% Quter for looe: stade=l -> declarations:
stade=l - inaut mart,
stage=d - srodram bodyy

»

o stade=4 - outsut rart, %X/ -
J ] zor(staseﬂ i stade <= 4 § ++stade) =
location = 0 i
not.dcrne = 1
/% irner locr 1: read the turles for the corresponding stade
from files keer track of the tor of the stack and save in
4 »rod(]) only those trirles that require a certain action %/
‘ o ~
@ { . .
fscanf( f» s *Yc' » %action ) ren
if{sctian 1= ‘L’) fseanf( f2 » *%d\n® » %value ) i
vlse { check(7y ++r.2tr) i ] .
fscanf( f» » *Zf\n' y &r_storelfptrl ) § } 2
switch (action) e

AR BRI ARAY!
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AN <
o %j case ‘R’ {  looking =1 1 J =03 /% REDUCE %/
"§ o while(looking &% J < N-du-s)
! ifl{valuye == dumasCJ++)) looking = 0 i
AU it(looking) sush_trirlel(actions values tor) i
. check(ly (tor += adJustivalue-11) )i
) < if{value == end_stagelstadel) not. dono 0 i
- }break
YRR se ‘C’ { { check{(1ly ++tor) $ /% SHIFT IDENTIFIER %/
b ce aush-tririe(actionv values tor )5 | /% OR INTEGER CONSTANT x%/
et vreak ’
N . >
= case ‘'L’ ¢ { check(ls++tom) /% SHIFT REAL CONSTANT x/
= I push.trirle(actions r_ptry tor)
jt o oreak i
:t - case 'S’ { check(1:++top) i /% SHIFT %/
R break
e DS case ‘A’ ! € check(ls #+tos) 3 /% ACCEPT %/
nush_trxrle(actton, valuesy tor )9
A oreak
™, " . :‘
A S . b4
Y ) }
AT while(not_done) }
L] h.‘l
S SE location = -1 ;
gy - not.done = 1 §
S /% irner loop 2! dxecute the action routines for that stade %X/
N while(not_done)
e o <
SO ++location
"ot value = srogllocation).value i
RS tor = prodllocationl.tor §
> ’ ?aitch( rrogllocationl.action )
s case ‘C’ I { stackltoer] = value 3 break i )
4 case ‘L’ ¢ { fstackCtorl = r_storelvaluel i break i >
o S c3se ‘R’ 1 { sesantic(valuesr toe) i Dreak i X
;; NG N case ‘A’ ! not.done = 0 §
o ¥
A ¥
: |: }fclase(fr) ’
A /% END OF THE MAIN PROGRAM X/
o
N
,;: ' 5;xxxxxxxxxxxxxxxxxxxxtxxxxxxxxxxxxxxxxzxxxxxxxxxxxxxxxxxxxxxxxxxt/
1_ = A routine to store a trirle in the array srodll]
::: - zush-hriﬁle(a v vo L) char 3 i int vit §
NN rrodflocationl.action = 3 §
SR --prodllocationl.value =v i
SR rrogllocationl.tor s 49
@ check(0s t+location) i
2 . ‘aturn(O) ]
i: r: /xxxxxxxxxxxxxxx:*xxx:xxxxxxxxxxxxxxxxxxx*xxxxxxxxxxxxxxxxxxxxxxxxx/
X
wAES
‘- '.‘
@9
e
.h )
A
. N -
~ =
- ':
’-. ............ R R SRS LIPS LR e e 4" e " €' ARt et et et e AT w™ - e
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- /% E SEMANTICS ROUTIN
ﬁ# REv e rr bbb troberdbdasbetPe bt abe bt b rrbi oo vi ot oobo o bbbt bbb tptot ettt
i: int declaring = 1 /% =1 only during declaration X/
EN int skis = 90 i /% to ski» calculation in case of don’'t cares %/
<. int Mskis= 0 ] /% to chose the argument in M orerator X/ —
' flost getfloat() i )
\ fioat_tflaat i /% temporary variable X/
o int TIME = 1 ; /3 dlobal sustem time %/ -
"' int d_flad 7
:" samantic(rular tor) ini rulertor (-_-;
PR { ]
s int 0y t2s reading » J ¢
if(Mskiz) £
- { switch(rule) . <
> { case 954 5 break i -
. w3se 34 ¢ -—stackttop-43 i
o case 43 : --Mskipr $ -
- Jefault ¢ return(Q) i s
L 1 > N
P iPlskis) b
- { suwitch(rule) T
" { case 53 ! .
N case 94 ¢ { --skir i return(0) i }
" case 37 ¢ .-
- case 3B ¢ o
: case 39 ¢ -
3 vase &0 ¢ .
X case o1 & { skirtt 3 return(0) i ¥
-, . gefault ¢ return(0) i -
’5:? y "
o %uitch(rule) .
{ i23se 1 { { not_done = 0 i return(0) & ) /% sisnal end of stage 4 %X/ ;ﬁ
o case 2 ¢ { declaring= Q /% signal end of declarations X/
- not.done = 0 } /% that is stade 1 X/
;: sea.size = sea_rtr - 1 i return(0) j§ 3 -~
= /% PARAMETER DECLARATION %/ -
- case 7 ¢ { 42 = stack{tas-2] 5 check(2,t2) § -
iPC(t2 > 2) 3% (sym_tablt2].ture !'= ‘' *)) run.error(ll) i =
sum.tablt2].antryl = stackltor] s

- we

sum.tablt2l.tyre = ‘P’
return¢0) % >

/% INDEX DECLARATIONS X/

case 108
case 11 { 0 = stackttopl i check(2st0)
iP((t0 > 2) 8% (sum.tablto0l. tspo t= 7)) pyn.error(ll)
sum.tablt0l.entryl = 0
sun.tablt0l.entry2 =2 0
s4m.tablt0].ture = ‘1’

return(0) 3 .
/% SEQUENCE DECLARATIONS ¥4 .

case 15! { check(Is ++ran.eter)
lboundlran_str] = 0 § -
uboundCran.ptrl = 0 o
seq.ptr = sea_str ¢ stackttor—ll i -
check{4y sea_rtr) ’
return(0) 3 } .
case 146 { t0 = stack({toel s
12080 > 2) 82 (ssn-tabttO] ture 12 ' ') run.error(iS) i N
syn.tab(t0].tyre 4-% ’
sun_tablt0d.entryl = sea_str
sya.tabltol.entryl = -
check (4y++sea_rtr) .
return(d) 5 ¥ "
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case

case

case

/%

case

ca3se

case

%

case

c3se

case

c3se

17 { stack[tor=21 = gstackltorl x stackltor-2] i
return(Q) i 2N

18 { t2 = stackttop-“] i check(2,t2)
iP((t2 > 2) 8% (sum_tabCt2l.tyee !'= ’ ‘)) run_error(13) i
ssn.tabttZJ.entrsl 2 sea.ptr §
sun_tablti).entry2 = ran_str §
ssn-tabtt;].tsre s '3’ {
return(d) ¥ >

19 { check(3st+ran_rtr) .
ybound ran-Ptr] 3 stzckttor] ]
1boundCran_str] = stackltos-2]1
stack(tor=2) = stack(tor] - stack[tomr-21 ¢ 1
return(d) 4 ¥

INDEX EXFRESSION 2/

20% { stackltor=2] = stack[tor-2] ¢+ stack[tor] i
return(0) ¥

21: { stack[tor-2] = stackltor-2] - stackltor]) i
return(0) & >

23: { stackltor-2) 3= stackitor] ;i
return(0) ¢ }

24! { stack{tos-1] = - stackltorli
return(0) + )

27: { stack(tor-21= stack[tor-1] i
return(0) / >

28: { 40 = stackltor] 7 check(2,t0) i
it(declaring 33 (sya_tab(t0).tuse != ‘P’)) run_error(4) i
ir((sym_.tablt0l.ture 2= ‘P’) || (sus_tablt0).tumse == ‘1’))

{ stackl{tor] = su-tab(tO].ontrsl 3 return(0)i X
ryn_error(3) § }
PROGRAM’S BODY x/

30: { if(++TIME <= stack[11) { location = -1 ¢ return(0) i >
erintf (°\n Xxxx QUTPUT SEGUENCES Xx%X\n’) i
not_done = 0 § /% sidnal end of stade J %/
return(0) % >

35¢ € t0 = stackltoms-2] §
it(sum_tadlt0l.entryl >= sym_tablt0l.entry2) return(0) j
++sum_tablt0l.entryl i
location = stackltor-=3] j
return(0) & >

362 { t2 = stackftor-5] i check(2,t2) §
it(syn_tabCt2].ture != ‘I’) run_error(s) § o
sya_tablt2l.entryl = stackltor-31 3 /% initial value X%/
sun.tablt2].entr92 = stackltor-11 i /% final value X/
stackltom-8]) = location i
return(Q) & ¥

37% < %2 = stackllor-2] i check(4:%2) i
if(last_comryted(t2]++ != TIME-1) run.error(il) j§
iP(stackLtor]) { write.d(t2,7IME) i return(0) § 2
sea_store(t2]CTIME] = fstackltoel |
return{0) 7 }

SEQUENCE SPECIFICATION X/

38 { t2 = stackl[toer-3] 7 t0 = stack(tor-11] }
if(1boundl++ran.nrter] 11 uboundtran-rtr]) run.error(3)i
sea.rtt = sum_ tabtb"].entrsl + 10 H
stackltor~3] = seq.rtr i
return(d) 7 *

37¢ { 0 = stackltorl i
if(sum_tablt0).tyre I= ’S’) run_error(ld) i
if(sym.tablt0l,entre2 1= -1) run_error(l4);
stackltor] = sum_tabltOl.entryl i
return(Q) 3§ >

40! { t0 = stackltorl ,
ran. #tr++
ifi(t) lboundtran-PtrJ 1 to > ubound[ran etrl) run.error(l) i
,tackttor-a. = gtackl{tor=23 X (uboundCran_.rtrl -

1boundCran_etr] + 1) + (stackltor) - lboundlran_=trl)
return(0} & ¥

41 { L2 = stackttor-ZJ i t0 = stackltoml j
creck(2yt2)
if(sum_tadlt2].tupe 127§’ || ssn-tabttZJ.entrsz < 0) rup.error(12);

ran_ptr = sum_tadltl.entry2 3

if(t0 < lboundCran.atrl |1 t0 > uboundlran_2trl) run_error(l)j
stackltos] = stackCtor] - 1boundCran_strl }

raturn(0) § >




/% ELEMENT WISE OFERATORS ON SEQUENCES */

case 423 {

.o
-~

case 42
case 4%5: {
case d94¢ {
case 470 {

case 48: {

case 30¢ {

/% OFERATORS

c3se 53¢ {

case 33 {

case 96¢ <

if(stackltor] (1 atackttop-°])
{stackltor-2]=1 + return(Q) >

fstackltor-2] += fstackltorl

stack[toe-22 =9 $

return{d) ¥ >

if({stack{torl 1| stackltos-21)
{stackltor-21=1 5 return(0) 2

tstack{tor-21 -= fstackltor)

stackltor-21] =0

return(Q) ¢ )

if(stackltorl || atackCtop-°])
{stackltur-23=1 i return(0) i’

fstackltor-2] X= fstackltorl i

atack[tar~°l =90

raturn(Q) §

1f(st3ck(to#] i stack[top-”])
{stackltor-21=1 i return(Q) 7

-

if(fstackltord) ¢ fstack[top-°] /= fstacktto#] y
stackttor- ] =03

else stackltor-21 =1
return(0) ¥ >

stackLtor=2) = u_ori(fstackltos-21r stackLtor-2]s f3tackltorl:

stackltor]»
fstack[tor-2)= tfloat
raturni{0) § }

stackltor-2] = u_or2(fstackltor-2]s stackl[tor-21s fstackltorls

stackltor),
fstackltor-21= tfloat :
return(0) + >

if{stack[toe])) {stackltoe-2]=1 }
fstackltor-2] %= fstackltor] )
stackltor-2] =0 H
ratuern(C) % >

DEFINED DIRECTLY ON SEQUENCES x/

t0 = stackltorl i check(4,40) ,
Jd last_conputed{tldl
1f(TIHE > J) run_errar{10);

if{read.d(t0»TIME)) { stack[torl = 1 ¢ return(0) >

fstackltorl = sea.storeCtQILTINME]
stackltorl =0
return(0) ;3 >
TIME = stackltoer-1] ;
fstack{tor-1] = fstackltorl
stackitor-11] stackltor] i
return(0) ¢ ¥

if(stackitor-31) run_error(?) j

Mekir = 0 ]
stack[tor-1] j
1

stackftor-3] =
fstackltor-3] = fstacklitor-11
return(Q) i >
t2 = stackl{tor-4] i
if{TIME < t2) { stack[toe=-8] =1
fstack{tor-8]=
return(0) 5 >
2 =2 (TIME = t2) % (stackl{tor=2]
0 = stackltorl i
= last_comrutedlt0] i
f(TIME > J) run.error(10) ;
tfloat = 0.0 §
for{Jz{TIME ~ t2) ¥ J <= TIME
if(read.d(t0,J)) { stacktto#-8
fstackl{tor=8
return(Q) i

L. .crc*

else tfloat += sea_store(t0lCJ]
stackltor-B8) =0 i
fstackltor~-31 = tfloat
return(0) & >
fstackltor=-2] = fstackltor~-11 i
sveckltor-2] = stack[toe-1]

retyrn{0) i }

ttfloat) i

stfloat) 5

return(Q) 7

!
§

s we

X stack{tor-41) i

f J
1= 0
>

t stackltor-21)
’
i
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o
2

case 57¢ { t2 = stackltor=3) 3 L0 = stackltoe-1] 213
iP(TINE < £2) {skis=l j .

E stack[tos-5] = 1 i
- fstackttor-ﬁ] = 0 } return(0) § >
L t2 = (TIME -~ t2) %
for(j=0 j &2 .= ratxo tenﬁta] Jtt) i o ]
stackl(tor-5]1 = ratio_rtr /% cardinalits of listx/
Mskir = J i /% chosen elenment x/

return(0) § >

case 38! { t0 = stackltor]
if(TIME <= t0) { skir=l }
stackltopr-11]
fatackltor-11]
stack{tor-11 = TIME i
TIME = TIME - 10 H
raturn(Q) 3 > _ |
case 59¢ { L0 = _stackltorl i
if(TIME <= L0) { skir = 1 3}
e stack[tos-1]
3 fstackltor-11
- tacktto#-l] TIMNE 3
. TIME = TIME to i
return(O) i
- case 30! { L0 = stackltor] §
-, 12 = (TIMNE ¢ t0) % (1 + tO)
. it(td) { skir =1 i} /% don’‘t care X/
stack{toe-1] =1
fstack[toer-1] = 0
. = (TIME + t0) /7 (1 + t0)
- stack[tor=1] = TIME
. TIME = t2
return(d)
case 61: { t0 = stackttor-l] i t2s= stack[tor-33

~ LARAABAL -
-

®atabe
Wi

’
0 ¢ return{d) >

e

PR
. -
»
AR

[ 1]
(=

§
0 5 return(Q) & ¥

- -
P RURe g SR e

return(0; 2>

e “we wp ‘@r we

SR if(TIME < ¢2) ( skir = 1
S stackftor-3] =1}

SE fatacklton-51 = 0 § return(0) §
“ stackltor=-5] = TIME
CEEE TIME = TIHE - ((TIME ~ t”) Z t0) H

return(0) § >
{ l' case 62: { stack[tos-2] = stackl{tos-1] § return(0) i }

N case 43 { stackltortl]l =1 § return(0) 5
T case 44: { --stackltomr-4]

SO stackCtor~2] = stackltorl

e N Pstackltor=-2] = fstack[torl
¥ case 85! (. --Mskip

. retuyrn(d) 7

A case 86! < check(&s ++ratio_ptr) }

S stackltor-2] += stackltorl
= ratio.temelratio.rtr] = stackltor-2] i

” return(0) § )

. e case 477 { ratio_ptr 3 0

s T ratio_temp(0] = stackCtor] }

- return(0) 5 X

i /% INPUT SFECIFICATIONS %/

: c3se 4683 ( not.done = 0 ? /% end of stade 2 %X/
return{(Q) 5
case 702 { stack[l) = stack[tor] i
check(Sy stackl{torl) j
return{(Q) )
case 71t { t0 = stackltorl] } reading = 1

4 for(J=1 3 J <= stack[1l } J++)
> .. if(reading)

AN { sea.storelt01{Jj] = getfloat(d_flad) i
o T if(d_flag == {) urxte-d(tOrJ) ;
w if(d.flag 2= -1) { reading = 0 i
g write_d(t0yd) & ¥
N > . .

ST else write_d(t0sJ)

g L last.computed(t0] = stackl1]

- return(0) § >
v . case 72¢ { t0 = stackltoe-1] }

N if(sum_tablt0l.antryl =z sua_tablt0l.entry2) return(0)
o t+eum_tadbCt0l.entryl
L location = stackltor-2]

.; return(0) 3 ¥

_'3

N O
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vase 73 { 42 = stackltos=4] i check(-yt-) #
it(syn_tabCt2l.ture !'= “I’) run_error(é) j
sum.tablt2l.entryl = stack[tot- l i
syn_tablt2],entry? = stackltorl i
stackltoms-5] = location j§

return(Q) § 2>
/X QUTPUT SPECIFICATIONE %/

c3se 773 { t0 = stackltom] ¢
tor{d=l 3 J <= stackll] i Jt++)
iflread_d{t0sj)) =rintf(* g *) ¥
else printf(*%25.2¢ *y sea_storelt0ILJ])
Frintf(*\n XEXXXTXXEEXKXAXXXXAKLEXEINN")
return(0) 7 >
case 785 { t0 = stackliop-1] i
if(sym_tad(t0l.ontryl = sua_tablifl.entry2) returndQ)
++sun_tabltOl.entrul §
location = stackl[toe-2] i
return(9) >

e 4 END OF THE SEMANTICS ROUTINES x/

'xxxxxxxxxxxxxxxxxxx:xxxxxxxxxxxxxx:xxxxxxxxxxxxxxxxxxx/
2 User Defined Omerator x/
/xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxtxxxx/

Tbese routines are rrovided by the user to define the
binars operators Ul and U2, The orerands are passed in

ol and 02 and the result is returned in r,

If any of the orerands is the don’t care swabols t1 or t2
i3 set Lo 1y corresrondindlys otherwise they are set to 0.
The return v3lue of the functions should Le 0 if the
cesult of the oreration is not a don’t care and 1 if it is.

/
u.cPl{olst1r02st2rr) int t1,t2 ;
?loat o102y Xr §

{
5: farmylas for u_orl and ¢ %/
ra

_0r2/0lrtlro2rt2sp) int tist2 &
float 01,02, %Xr

¥ Formuias for u_or2 and r %/

SN Ay

JRosvetedtototetbotbtoritoetotrtititochiodiobotedodetstt ¥y

v

¢ L1 RUN

o | R

I
A4

L]
w4

t
. le
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;:X***!3**!Xt!*i**X**t!*iX*l*i***i*l*t*l!i*!XX*X**!X!!X*X!**!!XX!*!*/

The following routine reads the next item from the

input dats file. It assunes that one of the following
exists on the files

1; a floating roint number,

<) 3 '3’ 7 indicating 3 don’t care itemr ]

3 ar ‘e’ 7 indicating that Lhe remaining items in

tie cuyrrent serauence are don’t cares.

I?e diffarent casas are sidnsled by the globsl flag d-flad

;loat detfioat()
‘int 1 int_part

int mins = 1
#loat fraction » »_of.10

I
y
.
?

while{{c=getchar{)) ==’ / Il e == '\n’ ) }
itic == g0F ) run. error(?)
if{c == '3’ ) { d_flag = /% 3 don‘t care sumbol X/
return(O) iy
‘v’ 3% (detchar() == ’,’) 3% (getchar() == ',’) )
{ d_.flag = -1 } /% seauence terainated %/
return{0) ;)

itle == ’=%) ( czgetchar() i minus = -1 3}

int_part = 0 §

whxle(xsdlsxt(c)) < xnt_Part {10 x int.rart) + (¢ - '0’)
¢ = getchar() 3

it{c =) run-errror(S) i
f-actxon = 0.0 i
p.of.10 = 10,0 j
whilel(isdisit(c=getchar())) {fraction = fraction + (¢ - ‘0’) / #_0f.10}
p.0of.10 = p_af_10 X 10,0 4

if{l{c t= 7 7) 8¢ (e != ‘\n’) ) run_error(8) i
fraction = ainus X ( int.part + fraction ) i}
d.flag = 0 ;

‘return(fraction) §

rFa

isdisit(d) int d i

ift(d <= '9° 3% 4 > '0’) return(l);
retyrn(Q)

>
;;!tt***t*!*##***#*!*X*l**i#X**!X**!*Xt*!XttXX*X*X**l!*********t**!**/

- -

ifle =

The following routines keee track of the sosition of the
don’t care sumbols in the data seauencesi Each entry in
a seauence has a3 corresronding bit in the arraw d_tabley
write_d(sst) sets the bit corresronding to the element t
of the sequence s to ! indicating & don’t care » while
read_d(sst) returns the value of the bit corresronding
Lo the element t in seauence s.

W */

X U %ribe-d(s;t) int s»t 3

AN

e int words bit §

SO unsidned eattarn 213

L e word = b /16 3

"G bit = (£ % 18) 3

oy rattesn = mstiern << (15-bit)
LN d_tablelsllwurdl = (d. tablo(s]tuord]) ] pattern i
A return{d)

-" h)

2 ’

' read.d(sst) int sst i

LN -+

)@ Ly int word, bit §

oo unsidgned rattern = 1 §

RICT Wworsg =

X d=t /144

SO bit = ¢ % 16 4

Q,‘ e a2attern = aattern << (135-bit) }
~e rattern = sattern & d_tableCslCuword]
-,

Y

if{rattern) return(l) §
return(0)

LA
.
.
.
s
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/%%%x ERROR ROUTINES *Xxxxx/

/%

A routine to check the bDounds of working arr3us» the array
;g be checked is determined by the ardument i,

check(ir» »tr) int isetr

it(ptr <
switch(i)
1

case 0 ¢
case 1 3
case 2 ¢
case 3 ¢
c3se 4 ¢
vase 5 ¢
case &
case 7 ¢

¥
exit(0) i
b

Jpeborertosrrrtebooboosetobtortitrooetiototitorits ottty

A pracedure to print run time error messases and stor
axecution, The agessase to be rrinted is detersmined

overflowlCil}) return(l) i

ns the ardument i.
x/

run_error(i) int i

switchii)
{

vese | ¢

o

L
*

case

.o

Q3se

..

c3se

case

o A &
.o

.o

Cc3se

~4
-

case

case

o o
.

.o

case
case 10!

case 113

case 12
case 13
case 14;

S

case |

/XXXXRXR END OF FROGRAM LISTING XKXKXX%%/

.
- . N

A A A M M A A A A A AN

-~

Lo T o T Y

arintf('!x}seauence arras out of bound \n')i

axit(0)

rintf (XX too many 3rray arduments \n*)
exit(0) &

Prxntf(‘xx too few arras arduments \n')
exit(0) ¥

ar;g%gg £X only parameters may be used in sequ. declaratrion \n*);
exi i
Prig%g§‘§x}expectins 3 P3r, or 3n index in sea. srecification \n*)i
axl ’

9r;2%8§‘*x}FOR variables must be declared as INDEX *)
axl i

Prgg%sg‘yx}urons number of arduments in Multirlexer list \n')i
axl ’

srintf (XX Foraat error in input file XX\n*)
exit(0) § ¥

o I M

bound table overflow

()10 + 20 + SR+ T - 2

arogram arr3y overflow £XX\n*')
working stack overflouw X¥X\n*)
symbol table overflow ¥xX\n')
2Xx\n*)
seauence store gverflow XX\n')
MAXT should be less than Zd\n'r Maxtime)i
temrorary ratio list overflow XX\n')j

real constants storade overflow X¥\n')j

arintf (XX insufficient data in input file XX\n')j

exit(d) & ¥
Prxntf(‘?* incorrect nodel or non causal eauations XX\n')j

%it(Q)

2rintf{*xx Inconsistent sustem of eaustions \n')
Pr;gfgg"t}ﬁtt!n?t to overwrite a seauerce
il H

Frintf{"Xx arraw of seauences not declared \n")
exit(Q) i X

srintf{ XX seauence not declared \n*)
axit(0) 3 >

rintf(*XX missind argument list \n®)
exit(Q}) ¢ )

rrintf{*Xx variable 3lreads declared \n

exit(0) i %

*
14
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